咨询与建议

限定检索结果

文献类型

  • 160 篇 期刊文献
  • 83 篇 会议

馆藏范围

  • 243 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 227 篇 工学
    • 149 篇 计算机科学与技术...
    • 81 篇 电气工程
    • 27 篇 控制科学与工程
    • 25 篇 软件工程
    • 23 篇 信息与通信工程
    • 15 篇 仪器科学与技术
    • 12 篇 机械工程
    • 8 篇 电子科学与技术(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 石油与天然气工程
    • 5 篇 土木工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 安全科学与工程
    • 3 篇 动力工程及工程热...
    • 3 篇 测绘科学与技术
    • 3 篇 环境科学与工程(可...
  • 47 篇 理学
    • 20 篇 生物学
    • 10 篇 数学
    • 10 篇 物理学
    • 9 篇 化学
    • 3 篇 地球物理学
    • 3 篇 地质学
    • 2 篇 统计学(可授理学、...
  • 26 篇 医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 临床医学
    • 4 篇 特种医学
  • 26 篇 管理学
    • 23 篇 管理科学与工程(可...
  • 6 篇 农学
  • 4 篇 经济学
    • 3 篇 应用经济学
    • 2 篇 理论经济学
  • 2 篇 法学
    • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 艺术学
  • 1 篇 文学

主题

  • 243 篇 deep autoencoder
  • 29 篇 deep learning
  • 24 篇 anomaly detectio...
  • 24 篇 feature extracti...
  • 9 篇 machine learning
  • 7 篇 transfer learnin...
  • 7 篇 deep neural netw...
  • 7 篇 fault detection
  • 7 篇 unsupervised lea...
  • 6 篇 fault diagnosis
  • 6 篇 dimensionality r...
  • 6 篇 neural networks
  • 6 篇 convolutional ne...
  • 5 篇 reinforcement le...
  • 5 篇 deep neural netw...
  • 5 篇 feature selectio...
  • 4 篇 representation l...
  • 4 篇 random forest
  • 4 篇 graph regulariza...
  • 4 篇 multi-view clust...

机构

  • 4 篇 tampere univ uni...
  • 4 篇 univ chinese aca...
  • 3 篇 jozef stefan ins...
  • 2 篇 univ chinese aca...
  • 2 篇 giet univ sch en...
  • 2 篇 amirkabir univ t...
  • 2 篇 guizhou univ sch...
  • 2 篇 guangxi univ sch...
  • 2 篇 princess nourah ...
  • 2 篇 malayer univ fac...
  • 2 篇 xi an jiao tong ...
  • 2 篇 northwestern pol...
  • 2 篇 univ sydney busi...
  • 2 篇 tulane univ ctr ...
  • 2 篇 emory univ atlan...
  • 2 篇 sejong univ
  • 2 篇 inst appl math &...
  • 2 篇 univ oviedo elec...
  • 2 篇 hunan normal uni...
  • 2 篇 belarusian state...

作者

  • 4 篇 mishra krishna m...
  • 4 篇 huhtala kalevi j...
  • 3 篇 diaz ignacio
  • 3 篇 loncarevic zvezd...
  • 3 篇 gams andrej
  • 3 篇 krogerus tomi r.
  • 2 篇 wei hong-quan
  • 2 篇 bilodeau guillau...
  • 2 篇 roy pankaj raj
  • 2 篇 maghsoudi abbas
  • 2 篇 lam fan
  • 2 篇 gao junbin
  • 2 篇 hussain tanveer
  • 2 篇 xiang yang
  • 2 篇 pan yu
  • 2 篇 pan zhisong
  • 2 篇 petrovsky alexan...
  • 2 篇 naeini saeed sav...
  • 2 篇 nayak dillip ran...
  • 2 篇 liu liu

语言

  • 236 篇 英文
  • 2 篇 其他
  • 1 篇 法文
  • 1 篇 中文
检索条件"主题词=deep autoencoder"
243 条 记 录,以下是31-40 订阅
排序:
A deep autoencoder with sparse and graph Laplacian regularization for characterizing dynamic functional connectivity during brain development
收藏 引用
NEUROCOMPUTING 2021年 456卷 97-108页
作者: Qiao, Chen Hu, Xin-Yu Xiao, Li Calhoun, Vince D. Wang, Yu-Ping Xi An Jiao Tong Univ Sch Math & Stat Xian 710049 Peoples R China Tulane Univ Dept Biomed Engn New Orleans LA 70118 USA Tulane Univ Ctr Genom & Bioinformat New Orleans LA 70112 USA Georgia State Univ Georgia Inst Technol Triinst Ctr Translat Res Neuroimaging & Data Sci Atlanta GA 30303 USA Emory Univ Atlanta GA 30303 USA
deep-layer autoencoder (DAE) provides a powerful way for medical image analysis, while it remains a daunting challenge due to the limited samples but high dimension. In this paper, a DAE with sparse and graph Laplacia... 详细信息
来源: 评论
CDDA: color-dominant deep autoencoder for faster and efficient bilateral image filtering
收藏 引用
SIGNAL IMAGE AND VIDEO PROCESSING 2021年 第6期15卷 1189-1195页
作者: Das, Apurba Shylaja, S. S. PES Univ Dept Comp Sci & Engn Bangalore Karnataka India
Nonlinear processing of high-dimensional data is quite common in image filtering algorithms. Bilateral, joint bilateral, and non-local means filters are the examples of the same. Real-time implementation of high-dimen... 详细信息
来源: 评论
Joint deep autoencoder and subgraph augmentation for inferring microbial responses to drugs
收藏 引用
BRIEFINGS IN BIOINFORMATICS 2024年 第1期25卷 bbad483页
作者: Zhou, Zhecheng Zhuo, Linlin Fu, Xiangzheng Zou, Quan Wenzhou Univ Technol Coll Data Sci & Artificial Intelligence Wenzhou Peoples R China Hunan Univ Coll Comp Sci & Elect Engn Changsha Peoples R China Univ Elect Sci & Technol China Inst Fundamental & Frontier Sci Chengdu Peoples R China
Exploring microbial stress responses to drugs is crucial for the advancement of new therapeutic methods. While current artificial intelligence methodologies have expedited our understanding of potential microbial resp... 详细信息
来源: 评论
A drug repositioning algorithm based on a deep autoencoder and adaptive fusion
收藏 引用
BMC BIOINFORMATICS 2021年 第1期22卷 1-18页
作者: Chen, Peng Bao, Tianjiazhi Yu, Xiaosheng Liu, Zhongtu China Three Gorges Univ Coll Comp & Informat Technol Yichang Hubei Peoples R China
Background Drug repositioning has caught the attention of scholars at home and abroad due to its effective reduction of the development cost and time of new drugs. However, existing drug repositioning methods that are... 详细信息
来源: 评论
A Combination of deep autoencoder and Multi-Scale Residual Network for Landslide Susceptibility Evaluation
收藏 引用
REMOTE SENSING 2023年 第3期15卷 653-653页
作者: Wang, Zhuolu Xu, Shenghua Liu, Jiping Wang, Yong Ma, Xinrui Jiang, Tao He, Xuan Han, Zeya Liaoning Tech Univ Sch Mapping & Geog Sci Fuxin 123000 Peoples R China Chinese Acad Surveying & Mapping Beijing 100830 Peoples R China Wuhan Univ Sch Resources & Environm Sci Wuhan 430072 Peoples R China
Landslide susceptibility evaluation can accurately predict the spatial distribution of potential landslides, which offers great usefulness for disaster prevention, disaster reduction, and land resource management. Aim... 详细信息
来源: 评论
deep autoencoder for Mass Spectrometry Feature Learning and Cancer Detection
收藏 引用
IEEE ACCESS 2020年 8卷 45156-45166页
作者: Zhou, Qingguo Yong, Binbin Lv, Qingquan Shen, Jun Wang, Xin Lanzhou Univ Sch Informat Sci & Engn Lanzhou 730030 Peoples R China Lanzhou Univ Sch Phys Sci & Technol Lanzhou 730030 Peoples R China State Grid Gansu Elect Power Res Inst Lanzhou 730030 Peoples R China Univ Wollongong Sch Comp & Informat Technol Wollongong NSW 2522 Australia
Cancer is still one of the most life threatening disease and by far it is still difficult to prevent, prone to recurrence and metastasis and high in mortality. Lots of studies indicate that early cancer diagnosis can ... 详细信息
来源: 评论
Fast deep autoencoder for fe derate d learning
收藏 引用
PATTERN RECOGNITION 2023年 第1期143卷
作者: Novoa-Paradela, David Fontenla-Romero, Oscar Guijarro-Berdinas, Bertha Univ A Coruna CITIC Campus Elvina s-n La Coruna 15008 Spain
This paper presents a novel, fast and privacy preserving implementation of deep autoencoders. DAEF (deep autoencoder for Federated learning), unlike traditional neural networks, trains a deep autoencoder network in a ... 详细信息
来源: 评论
deep-ReID: deep features and autoencoder assisted image patching strategy for person re-identification in smart cities surveillance
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2024年 第5期83卷 15079-15100页
作者: Khan, Samee Ullah Hussain, Tanveer Ullah, Amin Baik, Sung Wook Sejong Univ Seoul 143747 South Korea
Person Re-identification (P-ReID) task searches for true matches of a given query from a large repository of non-overlapping camera's images/videos. In smart cities surveillance, P-ReID is challenging due to varia... 详细信息
来源: 评论
Vibration Recognition Based on Feature Extraction by deep autoencoder  23
Vibration Recognition Based on Feature Extraction by Deep Au...
收藏 引用
Proceedings of the 2023 International Conference on Frontiers of Artificial Intelligence and Machine Learning
作者: Qingsong Xiong Cheng Yuan Keyan Ji Chang He Hai Bei Xiong State Key Laboratory of Disaster Reduction in Civil Engineering Tongji University Shanghai China China and Department of Civil and Environmental Engineering The Hong Kong Polytechnic University Hong Kong State Key Laboratory of Disaster Reduction in Civil Engineering Tongji University Shanghai China China
Vibrational response identification of high-rise building structures under excitation of varying ambient conditions is of great significance for structural vibration control and health monitoring. Traditional strategi... 详细信息
来源: 评论
deep autoencoder with localized stochastic sensitivity for short-term load forecasting
收藏 引用
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS 2021年 130卷 106954-106954页
作者: Wang, Ting Lai, Chun Sing Ng, Wing W. Y. Pan, Keda Zhang, Mingyang Vaccaro, Alfredo Lai, Loi Lei South China Univ Technol Guangdong Prov Key Lab Computat Intelligence & Cy Sch Comp Sci & Engn Guangzhou 510630 Peoples R China Brunel Univ London Brunel Interdisciplinary Power Syst Res Ctr London UB8 3PH England Guangdong Univ Technol Dept Elect Engn Sch Automat Guangzhou 510006 Peoples R China Univ Sannio Engn Dept I-82100 Benevento Italy
This paper presents a short-term electric load forecasting model based on deep autoencoder with localized stochastic sensitivity (D-LiSSA). D-LiSSA can learn informative hidden representations from unseen samples by m... 详细信息
来源: 评论