咨询与建议

限定检索结果

文献类型

  • 28 篇 期刊文献
  • 4 篇 会议

馆藏范围

  • 32 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 30 篇 工学
    • 14 篇 电气工程
    • 9 篇 控制科学与工程
    • 9 篇 计算机科学与技术...
    • 9 篇 石油与天然气工程
    • 5 篇 动力工程及工程热...
    • 4 篇 交通运输工程
    • 3 篇 仪器科学与技术
    • 3 篇 信息与通信工程
    • 3 篇 化学工程与技术
    • 2 篇 机械工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 力学(可授工学、理...
    • 1 篇 土木工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 软件工程
    • 1 篇 网络空间安全
  • 6 篇 理学
    • 3 篇 数学
    • 2 篇 物理学
    • 1 篇 化学
    • 1 篇 生物学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 1 篇 经济学
    • 1 篇 理论经济学

主题

  • 32 篇 deep determinist...
  • 10 篇 deep reinforceme...
  • 9 篇 reinforcement le...
  • 6 篇 gradient methods
  • 5 篇 optimisation
  • 3 篇 markov processes
  • 3 篇 control engineer...
  • 3 篇 markov decision ...
  • 3 篇 deep learning (a...
  • 3 篇 learning (artifi...
  • 2 篇 distributed deep...
  • 2 篇 road vehicles
  • 2 篇 mobile robots
  • 2 篇 decision making
  • 2 篇 road safety
  • 2 篇 collision avoida...
  • 2 篇 traffic engineer...
  • 2 篇 energy efficienc...
  • 1 篇 optimization pro...
  • 1 篇 plug-in hybrid e...

机构

  • 2 篇 south china univ...
  • 1 篇 kwangwoon univ s...
  • 1 篇 katholieke univ ...
  • 1 篇 army engn univ p...
  • 1 篇 guangdong power ...
  • 1 篇 southeast univ s...
  • 1 篇 chongqing univ c...
  • 1 篇 liaoning petroch...
  • 1 篇 school of teleco...
  • 1 篇 jiangsu open uni...
  • 1 篇 univ sci & techn...
  • 1 篇 kth royal inst t...
  • 1 篇 univ sci & techn...
  • 1 篇 jiangsu univ sch...
  • 1 篇 key laboratory o...
  • 1 篇 school of electr...
  • 1 篇 dongfeng liuzhou...
  • 1 篇 nanjing univ sci...
  • 1 篇 nyu inst policy ...
  • 1 篇 shanghai engn re...

作者

  • 3 篇 li jiawen
  • 2 篇 yu tao
  • 1 篇 zhang lin
  • 1 篇 qu xingda
  • 1 篇 gao xiuyu
  • 1 篇 zhang xinan
  • 1 篇 yang bo
  • 1 篇 jiang wei
  • 1 篇 wu tong
  • 1 篇 li shenglong
  • 1 篇 qin juhuan
  • 1 篇 yang changbo
  • 1 篇 ge yahang
  • 1 篇 liu xin
  • 1 篇 rajan s. deepa
  • 1 篇 chong nak young
  • 1 篇 lv youlong
  • 1 篇 li yaping
  • 1 篇 ye tong
  • 1 篇 wang hai

语言

  • 31 篇 英文
  • 1 篇 其他
检索条件"主题词=deep deterministic policy gradient algorithm"
32 条 记 录,以下是11-20 订阅
排序:
Multi-Agent deep Reinforcement Learning for Urban Traffic Light Control in Vehicular Networks
收藏 引用
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 2020年 第8期69卷 8243-8256页
作者: Wu, Tong Zhou, Pan Liu, Kai Yuan, Yali Wang, Xiumin Huang, Huawei Wu, Dapeng Oliver Huazhong Univ Sci & Technol Sch Elect Informat & Commun Engn Wuhan 430074 Peoples R China Huazhong Univ Sci & Technol Hubei Engn Res Ctr Big Data Secur Sch Cyber Sci & Engn Wuhan 430074 Peoples R China Chongqing Univ Coll Comp Sci Chongqing 400040 Peoples R China Gottingen Univ Inst Comp Sci D-37077 Gottingen Germany South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou 510006 Peoples R China Univ Florida Dept Elect & Comp Engn Gainesville FL 32611 USA
As urban traffic condition is diverse and complicated, applying reinforcement learning to reduce traffic congestion becomes one of the hot and promising topics. Especially, how to coordinate the traffic light controll... 详细信息
来源: 评论
Optimal control strategy for solid oxide fuel cell-based hybrid energy system using deep reinforcement learning
收藏 引用
IET RENEWABLE POWER GENERATION 2022年 第5期16卷 912-921页
作者: Chen, Tao Gao, Ciwei Song, Yutong Southeast Univ Sch Elect Engn Nanjing Peoples R China
This paper proposes a self-adaptive control strategy for solid oxide fuel cell (SOFC) based hybrid energy system using deep reinforcement learning (DRL) techniques. Highly efficient use of hydrogen in a hybrid energy ... 详细信息
来源: 评论
Parametric Dueling DQN- and DDPG-Based Approach for Optimal Operation of Microgrids
收藏 引用
PROCESSES 2024年 第9期12卷 1822-1822页
作者: Huang, Wei Li, Qing Jiang, Yuan Lu, Xiaoya Univ Sci & Technol Beijing Sch Automat & Elect Engn Beijing 100083 Peoples R China Univ Sci & Technol Beijing Key Lab Ind Proc Knowledge Automat Minist Educ Beijing 100083 Peoples R China
This study is aimed at addressing the problem of optimizing microgrid operations to improve local renewable energy consumption and ensure the stability of multi-energy systems. Microgrids are localized power systems t... 详细信息
来源: 评论
Tracking interval control for urban rail trains based on safe reinforcement learning
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2024年 第PartB期137卷
作者: Lin, Junting Qiu, Xiaohui Li, Maolin Lanzhou Jiaotong Univ Sch Automat & Elect Engn Lanzhou 730070 Peoples R China
In order to solve the problem of controlling the interval between trains in the new train control system, which aims to ensure the safe operation of trains and improve traffic density, the process of managing train sp... 详细信息
来源: 评论
A sharing deep reinforcement learning method for efficient vehicle platooning control
收藏 引用
IET INTELLIGENT TRANSPORT SYSTEMS 2022年 第12期16卷 1697-1709页
作者: Lu, Sikai Cai, Yingfeng Chen, Long Wang, Hai Sun, Xiaoqiang Jia, Yunyi Jiangsu Univ Automot Engn Res Inst Zhenjiang 212013 Jiangsu Peoples R China Jiangsu Univ Sch Automot & Traff Engn Zhenjiang Jiangsu Peoples R China Clemson Univ Int Ctr Automot Reseatch CU ICAR Dept Automot Engn Greenville SC USA Zhenjiang City Jiangsu Univ Engn Technol Res Inst Zhenjiang Jiangsu Peoples R China
The combination of reinforcement learning and platooning control has been widely studied, which has been considered to be altruistic on the basis of safety. However, the platooning control method based on reinforcemen... 详细信息
来源: 评论
deep reinforcement learning based active safety control for distributed drive electric vehicles
收藏 引用
IET INTELLIGENT TRANSPORT SYSTEMS 2022年 第6期16卷 813-824页
作者: Wei, Hongqian Zhao, Wenqiang Ai, Qiang Zhang, Youtong Huang, Tianyi Beijing Inst Technol Sch Mech Engn Beijing 100081 Peoples R China
Distributed drive electric vehicles are regarded as the promising transportation due to the advanced power flow architecture. Optimizing the yaw motion to enhance vehicle safety is a challenging job. Besides, the nonl... 详细信息
来源: 评论
Computational Performance of deep Reinforcement Learning to Find Nash Equilibria (Jan 2023, 10.1007/s10614-022-10351-6)
收藏 引用
COMPUTATIONAL ECONOMICS 2024年 第2期63卷 577-577页
作者: Graf, Christoph Zobernig, Viktor Schmidt, Johannes Kloeckl, Claude NYU Inst Policy Integr New York NY 10012 USA Stanford Univ Program Energy & Sustainable Dev PESD Stanford CA 94305 USA Univ Nat Resources & Life Sci Inst Sustainable Econ Dev Vienna Austria
We test the performance of deep deterministic policy gradient—a deep reinforcement learning algorithm, able to handle continuous state and action spaces—to find Nash equilibria in a setting where firms compete in of... 详细信息
来源: 评论
Coordination and Control in Multiagent Systems for Enhanced Pursuit-Evasion Game Performance
收藏 引用
DYNAMIC GAMES AND APPLICATIONS 2024年 1-22页
作者: Zhuang, Hua Gao, Pengqun Wu, Xiaotong Zhang, Ying Jia, Huayi Hohai Univ Business Sch Nanjing 211100 Jiangsu Peoples R China Jiangsu Open Univ Business Sch Nanjing 210036 Jiangsu Peoples R China Nantong Univ Business Sch Management Sch Nantong 226019 Jiangsu Peoples R China Hong Kong Polytech Univ Sch Hotel & Tourism Management Hong Kong Peoples R China Zhejiang Coll Secur Technol Gen Adm Off Wenzhou 325016 Peoples R China
This study introduces a creative approach called the Hybrid deep Reinforcement Learning Approach (HYDREIL), which aims to improve coordination and control within the multiagent system for pursuit-evasion games. By com... 详细信息
来源: 评论
deep reinforcement learning-based balancing and sequencing approach for mixed model assembly lines
IET COLLABORATIVE INTELLIGENT MANUFACTURING
收藏 引用
IET COLLABORATIVE INTELLIGENT MANUFACTURING 2022年 第3期4卷 181-193页
作者: Lv Youlong Tan Yuanliang Ray, Zhong Zhang Peng Wang Junliang Zhang Jie Donghua Univ Inst Artificial Intelligence Shanghai 201620 Peoples R China Shanghai Engn Res Ctr Ind Big Data & Intelligent Shanghai Peoples R China Donghua Univ Coll Mech Engn Shanghai Peoples R China Univ Hong Kong Dept Ind & Mfg Syst Engn Hong Kong Peoples R China
A multi-agent iterative optimisation method based on deep reinforcement learning is proposed for the balancing and sequencing problem in mixed model assembly lines. Based on the Markov decision process model for balan... 详细信息
来源: 评论
Parameter Design Optimization for DC-DC Power Converters with deep Reinforcement Learning
Parameter Design Optimization for DC-DC Power Converters wit...
收藏 引用
14th Annual IEEE Energy Conversion Congress and Exposition (IEEE ECCE) / IEEE-Industry-Applications-Society (IEEE-IAS) Annual Meeting
作者: Tian, Fanghao Cobaleda, Diego Bernal Wouters, Hans Martinez, Wilmar Katholieke Univ Leuven Energy Ville Dept Elect Engn ESAT Genk Belgium
The deep deterministic policy gradient (DDPG) algorithm, a reinforcement learning (RL) technique which trains an agent to achieve the maximal reward by interacting with the environment, is applied for parameters optim... 详细信息
来源: 评论