咨询与建议

限定检索结果

文献类型

  • 212 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 221 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 221 篇 工学
    • 215 篇 控制科学与工程
    • 209 篇 电气工程
    • 13 篇 计算机科学与技术...
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 软件工程
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 221 篇 deep learning in...
  • 23 篇 visual learning
  • 20 篇 perception for g...
  • 19 篇 task analysis
  • 18 篇 motion and path ...
  • 18 篇 localization
  • 18 篇 computer vision ...
  • 16 篇 visual-based nav...
  • 16 篇 robots
  • 15 篇 object detection
  • 14 篇 segmentation and...
  • 14 篇 semantic scene u...
  • 12 篇 computer vision ...
  • 12 篇 training
  • 11 篇 learning from de...
  • 11 篇 force and tactil...
  • 11 篇 learning and ada...
  • 11 篇 slam
  • 10 篇 grasping
  • 9 篇 robot sensing sy...

机构

  • 6 篇 hong kong univ s...
  • 5 篇 univ michigan de...
  • 5 篇 georgia inst tec...
  • 5 篇 univ perugia dep...
  • 4 篇 imperial coll lo...
  • 4 篇 stanford univ st...
  • 4 篇 natl univ singap...
  • 3 篇 swiss fed inst t...
  • 3 篇 univ hong kong d...
  • 3 篇 carnegie mellon ...
  • 3 篇 city univ hong k...
  • 3 篇 kth royal inst t...
  • 3 篇 univ michigan de...
  • 2 篇 seoul natl univ ...
  • 2 篇 univ adelaide sc...
  • 2 篇 georgia inst tec...
  • 2 篇 mit comp sci & a...
  • 2 篇 karlsruhe inst t...
  • 2 篇 swiss fed inst t...
  • 2 篇 carnegie mellon ...

作者

  • 8 篇 liu ming
  • 5 篇 costante gabriel...
  • 5 篇 yang guang-zhong
  • 5 篇 bohg jeannette
  • 5 篇 calandra roberto
  • 5 篇 johnson-roberson...
  • 3 篇 kumar vijay
  • 3 篇 chen steven w.
  • 3 篇 sartoretti guill...
  • 3 篇 tai lei
  • 3 篇 rus daniela
  • 3 篇 zhou xiao-yun
  • 3 篇 pan jia
  • 3 篇 vasudevan ram
  • 3 篇 davison andrew j...
  • 3 篇 choi changhyun
  • 3 篇 folkesson john
  • 3 篇 kelly jonathan
  • 3 篇 kawai hisashi
  • 3 篇 magassouba aly

语言

  • 221 篇 英文
检索条件"主题词=deep learning in robotics and automation"
221 条 记 录,以下是141-150 订阅
排序:
Fast and Continuous Foothold Adaptation for Dynamic Locomotion Through CNNs
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 2140-2147页
作者: Magana, Octavio Antonio Villarreal Barasuol, Victor Camurri, Marco Franceschi, Luca Focchi, Michele Pontil, Massimiliano Caldwell, Darwin G. Semini, Claudio Ist Italiano Tecnol Dynam Legged Syst Lab I-16163 Genoa Italy Univ Oxford Oxford Robot Inst Oxford OX2 6NN England Ist Italian Tecnol Computat Stat & Machine Learning I-16163 Genoa Italy Ist Italiano Tecnol Dept Adv Robot I-16163 Genoa Italy
Legged robots can outperform wheeled machines for most navigation tasks across unknown and rough terrains. For such tasks, visual feedback is a fundamental asset to provide robots with terrain awareness. However, robu... 详细信息
来源: 评论
learning Long-Range Perception Using Self-Supervision From Short-Range Sensors and Odometry
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 1279-1286页
作者: Nava, Mirko Guzzi, Jerome Chavez-Garcia, R. Omar Gambardella, Luca M. Giusti, Alessandro USI SUPSI Dalle Molle Inst Artificial Intelligence IDSIA CH-6928 Lugano Switzerland
We introduce a general self-supervised approach to predict the future outputs of a short-range sensor (such as a proximity sensor) given the current outputs of a long-range sensor (such as a camera). We assume that th... 详细信息
来源: 评论
Real-Time 3-D Shape Instantiation for Partially Deployed Stent Segments From a Single 2-D Fluoroscopic Image in Fenestrated Endovascular Aortic Repair
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 3703-3710页
作者: Zheng, Jian-Qing Zhou, Xiao-Yun Riga, Celia Yang, Guang-Zhong Imperial Coll London Hamlyn Ctr Robot Surg London SW7 2AZ England St Marys Hosp Reg Vasc Unit London W2 1NY England Imperial Coll London Acad Div Surg London SW7 2A2 England
In fenestrated endovascular aortic repair (FEVAR), accurate alignment of stent graft fenestrations or scallops with aortic branches is essential for establishing complete blood flow perfusion. Current navigation is la... 详细信息
来源: 评论
A deep learning Approach for Probabilistic Security in Multi-Robot Teams
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 4262-4269页
作者: Wehbe, Remy Williams, Ryan K. Virginia Polytech Inst & State Univ Dept Elect & Comp Engn Blacksburg VA 24061 USA
In this letter, we train a convolutional neural network (CNN) to predict the probability of security of a multi-robot system (MRS) when robot interactions are probabilistic. In the context of MRSs, probabilistic secur... 详细信息
来源: 评论
learning Affordance Segmentation for Real-World Robotic Manipulation via Synthetic Images
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 1140-1147页
作者: Chu, Fu-Jen Xu, Ruinian Vela, Patricio A. Georgia Inst Technol Inst Robot & Intelligent Machines Atlanta GA 30332 USA
This letter presents a deep learning framework to predict the affordances of object parts for robotic manipulation. The framework segments affordance maps by jointly detecting and localizing candidate regions within a... 详细信息
来源: 评论
Vision-Based Estimation of Driving Energy for Planetary Rovers Using deep learning and Terramechanics
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 3876-3883页
作者: Higa, Shoya Iwashita, Yumi Otsu, Kyohei Ono, Masahiro Lamarre, Olivier Didier, Annie Hoffmann, Mark CALTECH Jet Prop Lab 4800 Oak Grove Dr Pasadena CA 91109 USA Univ Toronto Inst Aerosp Studies STARS Lab Toronto ON M3H 5T6 Canada
This letter presents a prediction algorithm of driving energy for future Mars rover missions. The majority of future Mars rovers would be solar-powered, which would require energy-optimal driving to maximize the range... 详细信息
来源: 评论
Fully Automated Annotation With Noise-Masked Visual Markers for deep-learning-Based Object Detection
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 1972-1977页
作者: Kiyokawa, Takuya Tomochika, Keita Takamatsu, Jun Ogasawara, Tsukasa Nara Inst Sci & Technol Div Informat Sci Nara 6300192 Japan
Automated factories use deep-learning-based vision systems to accurately detect various products. However, training such vision systems requires manual annotation of a significant amount of data to optimize the large ... 详细信息
来源: 评论
learning to See the Wood for the Trees: deep Laser Localization in Urban and Natural Environments on a CPU
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 1327-1334页
作者: Tinchev, Georgi Penate-Sanchez, Adrian Fallon, Maurice Univ Oxford Oxford Robot Inst Dynam Syst Grp Oxford OX2 6NN England
Localization in challenging, natural environments, such as forests or woodlands, is an important capability for many applications from guiding a robot navigating along a forest trail to monitoring vegetation growth wi... 详细信息
来源: 评论
PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent learning
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第3期4卷 2378-2385页
作者: Sartoretti, Guillaume Kerr, Justin Shi, YunFei Wagner, Glenn Kumar, T. K. Satish Koenig, Sven Choset, Howie Carnegie Mellon Univ Robot Inst Pittsburgh PA 15213 USA CSIRO Pullenvale Qld 4069 Australia Univ Southern Calif Comp Sci Dept Los Angeles CA 90089 USA
Multi-agent path finding (MAPF) is an essential component of many large-scale, real-world robot deployments, from aerial swarms to warehouse automation. However, despite the community's continued efforts, most sta... 详细信息
来源: 评论
Lifelong Federated Reinforcement learning: A learning Architecture for Navigation in Cloud Robotic Systems
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 4555-4562页
作者: Liu, Boyi Wang, Lujia Liu, Ming Chinese Acad Sci Shenzhen Inst Adv Technol Cloud Comp Lab Shenzhen 518055 Peoples R China Univ Chinese Acad Sci Beijing 100190 Peoples R China Hong Kong Univ Sci & Technol Dept Elect & Comp Engn Hong Kong Peoples R China
This letter was motivated by the problem of how to make robots fuse and transfer their experience so that they can effectively use prior knowledge and quickly adapt to new environments. To address the problem, we pres... 详细信息
来源: 评论