咨询与建议

限定检索结果

文献类型

  • 212 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 221 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 221 篇 工学
    • 215 篇 控制科学与工程
    • 209 篇 电气工程
    • 13 篇 计算机科学与技术...
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 软件工程
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 221 篇 deep learning in...
  • 23 篇 visual learning
  • 20 篇 perception for g...
  • 19 篇 task analysis
  • 18 篇 motion and path ...
  • 18 篇 localization
  • 18 篇 computer vision ...
  • 16 篇 visual-based nav...
  • 16 篇 robots
  • 15 篇 object detection
  • 14 篇 segmentation and...
  • 14 篇 semantic scene u...
  • 12 篇 computer vision ...
  • 12 篇 training
  • 11 篇 learning from de...
  • 11 篇 force and tactil...
  • 11 篇 learning and ada...
  • 11 篇 slam
  • 10 篇 grasping
  • 9 篇 robot sensing sy...

机构

  • 6 篇 hong kong univ s...
  • 5 篇 univ michigan de...
  • 5 篇 georgia inst tec...
  • 5 篇 univ perugia dep...
  • 4 篇 imperial coll lo...
  • 4 篇 stanford univ st...
  • 4 篇 natl univ singap...
  • 3 篇 swiss fed inst t...
  • 3 篇 univ hong kong d...
  • 3 篇 carnegie mellon ...
  • 3 篇 city univ hong k...
  • 3 篇 kth royal inst t...
  • 3 篇 univ michigan de...
  • 2 篇 seoul natl univ ...
  • 2 篇 univ adelaide sc...
  • 2 篇 georgia inst tec...
  • 2 篇 mit comp sci & a...
  • 2 篇 karlsruhe inst t...
  • 2 篇 swiss fed inst t...
  • 2 篇 carnegie mellon ...

作者

  • 8 篇 liu ming
  • 5 篇 costante gabriel...
  • 5 篇 yang guang-zhong
  • 5 篇 bohg jeannette
  • 5 篇 calandra roberto
  • 5 篇 johnson-roberson...
  • 3 篇 kumar vijay
  • 3 篇 chen steven w.
  • 3 篇 sartoretti guill...
  • 3 篇 tai lei
  • 3 篇 rus daniela
  • 3 篇 zhou xiao-yun
  • 3 篇 pan jia
  • 3 篇 vasudevan ram
  • 3 篇 davison andrew j...
  • 3 篇 choi changhyun
  • 3 篇 folkesson john
  • 3 篇 kelly jonathan
  • 3 篇 kawai hisashi
  • 3 篇 magassouba aly

语言

  • 221 篇 英文
检索条件"主题词=deep learning in robotics and automation"
221 条 记 录,以下是151-160 订阅
排序:
Lifelong Federated Reinforcement learning: A learning Architecture for Navigation in Cloud Robotic Systems
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 4555-4562页
作者: Liu, Boyi Wang, Lujia Liu, Ming Chinese Acad Sci Shenzhen Inst Adv Technol Cloud Comp Lab Shenzhen 518055 Peoples R China Univ Chinese Acad Sci Beijing 100190 Peoples R China Hong Kong Univ Sci & Technol Dept Elect & Comp Engn Hong Kong Peoples R China
This letter was motivated by the problem of how to make robots fuse and transfer their experience so that they can effectively use prior knowledge and quickly adapt to new environments. To address the problem, we pres... 详细信息
来源: 评论
Vision-Based High-Speed Driving With a deep Dynamic Observer
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 1564-1571页
作者: Drews, Paul Williams, Grady Goldfain, Brian Theodorou, Evangelos A. Rehg, James M. Georgia Inst Technol IRIM Atlanta GA 30332 USA
In this letter, we present a framework for combining deep learning-based road detection, particle filters, and model predictive control (MPC) to drive aggressively using only amonocular camera, IMU, and wheel speed se... 详细信息
来源: 评论
Bio-LSTM: A Biomechanically Inspired Recurrent Neural Network for 3-D Pedestrian Pose and Gait Prediction
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 1501-1508页
作者: Du, Xiaoxiao Vasudevan, Ram Johnson-Roberson, Matthew Univ Michigan Dept Naval Architecture & Marine Engn Ann Arbor MI 48109 USA Univ Michigan Dept Mech Engn Ann Arbor MI 48109 USA
In applications, such as autonomous driving, it is important to understand, infer, and anticipate the intention and future behavior of pedestrians. This ability allows vehicles to avoid collisions and improve ride saf... 详细信息
来源: 评论
Self-Supervised Drivable Area and Road Anomaly Segmentation Using RGB-D Data For Robotic Wheelchairs
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 4386-4393页
作者: Wang, Hengli Sun, Yuxiang Liu, Ming Hong Kong Univ Sci & Technol Dept Elect & Comp Engn Kowloon Clear Water Bay Hong Kong Peoples R China
The segmentation of drivable areas and road anomalies are critical capabilities to achieve autonomous navigation for robotic wheelchairs. The recent progress of semantic segmentation using deep learning techniques has... 详细信息
来源: 评论
deepIG: Multi-Robot Information Gathering With deep Reinforcement learning
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第3期4卷 3059-3066页
作者: Viseras, Alberto Garcia, Ricardo German Aerosp Ctr DLR Inst Commun & Nav D-82234 Oberplaffenholen Germany Univ Politecn Madrid ETSI Telecomunicac E-28040 Madrid Spain
State-of-the-art multi-robot information gathering (MR-IG) algorithms often rely on a model that describes the structure of the information of interest to drive the robots motion. This causes MR-IG algorithms to fail ... 详细信息
来源: 评论
Autonomous 3-D Reconstruction, Mapping, and Exploration of Indoor Environments With a Robotic Arm
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 3340-3347页
作者: Wang, Yiming James, Stuart Stathopoulou, Elisavet Konstantina Beltran-Gonzalez, Carlos Konishi, Yoshinori Del Bue, Alessi IIT VGM Lab I-16163 Genoa Italy IIT CCHT I-30175 Venice Italy Bruno Kessler Fdn FBK 3D Opt Metrol Unit I-38123 Trento Italy IIT Pattern Anal & Comp Vis PAVIS Dept I-16163 Genoa Italy OMRON Res Kyoto 6008530 Japan
We propose a novel information gain metric that combines hand-crafted and data-driven metrics to address the next best view problem for autonomous 3-D mapping of unknown indoor environments. For the hand-crafted metri... 详细信息
来源: 评论
Environment-Aware Multi-Target Tracking of Pedestrians
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 1831-1837页
作者: Doellinger, Johannes Prabhakaran, Vishnu Suganth Fu, Liangcheng Spies, Markus Bosch Ctr Artificial Intelligence D-71272 Renningen Germany Univ Stuttgart Dept Comp Sci D-70569 Stuttgart Germany Meituan Dianping Grp Beijing 100102 Peoples R China
When navigating mobile robotic systems in dynamic environments, the ability to predict where pedestrians will move in the next few seconds is crucial. To tackle this problem, many solutions have been developed which t... 详细信息
来源: 评论
VR-Goggles for Robots: Real-to-Sim Domain Adaptation for Visual Control
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 1148-1155页
作者: Zhang, Jingwei Tai, Lei Yun, Peng Xiong, Yufeng Liu, Ming Boedecker, Joschka Burgard, Wolfram Univ Freiburg Dept Comp Sci D-79110 Breisgau Germany Hong Kong Univ Sci & Technol Dept Elect & Comp Engn Hong Kong Peoples R China
In this letter, we deal with the reality gap from a novel perspective, targeting transferring deep reinforcement learning (DRL) policies learned in simulated environments to the real-world domain for visual control ta... 详细信息
来源: 评论
Context-Aware Depth and Pose Estimation for Bronchoscopic Navigation
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 732-739页
作者: Shen, Mali Gu, Yun Liu, Ning Yang, Guang-Zhong Imperial Coll London Hamlyn Ctr Robot Surg London SW7 2AZ England
Endobronchial intervention is increasingly used as a minimally invasive means of lung intervention. Vision-based localization approaches are often sensitive to image artifacts in bronchoscopic videos. In this letter, ... 详细信息
来源: 评论
Focal Loss in 3D Object Detection
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 1263-1270页
作者: Yun, Peng Tai, Lei Wang, Yuan Liu, Chengju Liu, Ming Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Hong Kong Peoples R China Hong Kong Univ Sci & Technol Dept Elect & Comp Engn Hong Kong Peoples R China Tongji Univ Coll Elect & Informat Engn Shanghai 201804 Peoples R China
3D object detection is still an open problem in autonomous driving scenes. When recognizing and localizing key objects from sparse 3D inputs, autonomous vehicles suffer from a larger continuous searching space and hig... 详细信息
来源: 评论