咨询与建议

限定检索结果

文献类型

  • 212 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 221 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 221 篇 工学
    • 215 篇 控制科学与工程
    • 209 篇 电气工程
    • 13 篇 计算机科学与技术...
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 软件工程
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 221 篇 deep learning in...
  • 23 篇 visual learning
  • 20 篇 perception for g...
  • 19 篇 task analysis
  • 18 篇 motion and path ...
  • 18 篇 localization
  • 18 篇 computer vision ...
  • 16 篇 visual-based nav...
  • 16 篇 robots
  • 15 篇 object detection
  • 14 篇 segmentation and...
  • 14 篇 semantic scene u...
  • 12 篇 computer vision ...
  • 12 篇 training
  • 11 篇 learning from de...
  • 11 篇 force and tactil...
  • 11 篇 learning and ada...
  • 11 篇 slam
  • 10 篇 grasping
  • 9 篇 robot sensing sy...

机构

  • 6 篇 hong kong univ s...
  • 5 篇 univ michigan de...
  • 5 篇 georgia inst tec...
  • 5 篇 univ perugia dep...
  • 4 篇 imperial coll lo...
  • 4 篇 stanford univ st...
  • 4 篇 natl univ singap...
  • 3 篇 swiss fed inst t...
  • 3 篇 univ hong kong d...
  • 3 篇 carnegie mellon ...
  • 3 篇 city univ hong k...
  • 3 篇 kth royal inst t...
  • 3 篇 univ michigan de...
  • 2 篇 seoul natl univ ...
  • 2 篇 univ adelaide sc...
  • 2 篇 georgia inst tec...
  • 2 篇 mit comp sci & a...
  • 2 篇 karlsruhe inst t...
  • 2 篇 swiss fed inst t...
  • 2 篇 carnegie mellon ...

作者

  • 8 篇 liu ming
  • 5 篇 costante gabriel...
  • 5 篇 yang guang-zhong
  • 5 篇 bohg jeannette
  • 5 篇 calandra roberto
  • 5 篇 johnson-roberson...
  • 3 篇 kumar vijay
  • 3 篇 chen steven w.
  • 3 篇 sartoretti guill...
  • 3 篇 tai lei
  • 3 篇 rus daniela
  • 3 篇 zhou xiao-yun
  • 3 篇 pan jia
  • 3 篇 vasudevan ram
  • 3 篇 davison andrew j...
  • 3 篇 choi changhyun
  • 3 篇 folkesson john
  • 3 篇 kelly jonathan
  • 3 篇 kawai hisashi
  • 3 篇 magassouba aly

语言

  • 221 篇 英文
检索条件"主题词=deep learning in robotics and automation"
221 条 记 录,以下是11-20 订阅
排序:
The voraus-AD Dataset for Anomaly Detection in Robot Applications
收藏 引用
IEEE TRANSACTIONS ON robotics 2024年 40卷 438-451页
作者: Brockmann, Jan Thies Rudolph, Marco Rosenhahn, Bodo Wandt, Bastian Voraus Robot GmbH D-30167 Hannover Germany Leibniz Univ Hannover Inst Informat Proc L3S D-30167 Hannover Germany Linkoping Univ Comp Vis Lab Linkoping Sweden
During the operation of industrial robots, unusual events may endanger the safety of humans and the quality of production. When collecting data to detect such cases, it is not ensured that data from all potentially oc... 详细信息
来源: 评论
Mitigating Distributional Shift in Semantic Segmentation via Uncertainty Estimation From Unlabeled Data
收藏 引用
IEEE TRANSACTIONS ON robotics 2024年 40卷 3146-3165页
作者: Williams, David S. W. Martini, Daniele De Gadd, Matthew Newman, Paul Univ Oxford Oxford Robot Inst Dept Engn Sci Oxford OX1 2JD England
Knowing when a trained segmentation model is encountering data that is different to its training data is important. Understanding and mitigating the effects of this play an important part in their application from a p... 详细信息
来源: 评论
Semi-Supervised Gait Generation With Two Microfluidic Soft Sensors
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第3期4卷 2501-2507页
作者: Kim, Dooyoung Kim, Min Kwon, Junghan Park, Yong-Lae Jo, Sungho Korea Adv Inst Sci & Technol Sch Comp Daejeon 305701 South Korea Seoul Natl Univ Dept Mech Engn & Aerosp Engn Seoul 08826 South Korea Seoul Natl Univ Inst Adv Machines & Design Seoul 08826 South Korea
Nowadays, the use of deep learning for the calibration of soft wearable sensors has addressed the typical drawbacks of the microfluidic soft sensors, such as hysteresis and nonlinearity. However, previous studies have... 详细信息
来源: 评论
learning Context Flexible Attention Model for Long-Term Visual Place Recognition
收藏 引用
IEEE robotics AND automation LETTERS 2018年 第4期3卷 4015-4022页
作者: Chen, Zetao Liu, Lingqiao Sa, Inkyu Ge, Zongyuan Chli, Margarita Swiss Fed Inst Technol Vis Robot Lab CH-8092 Zurich Switzerland Univ Adelaide Sch Comp Sci Adelaide SA 5005 Australia Swiss Fed Inst Technol Autonomous Syst Lab CH-8092 Zurich Switzerland Monash Univ ERes Ctr Melbourne Vic 3800 Australia
Identifying regions of interest in an image has long been of great importance in a wide range of tasks, including place recognition. In this letter, we propose a novel attention mechanism with flexible context, which ... 详细信息
来源: 评论
DPC-Net: deep Pose Correction for Visual Localization
收藏 引用
IEEE robotics AND automation LETTERS 2018年 第3期3卷 2424-2431页
作者: Peretroukhin, Valentin Kelly, Jonathan Univ Toronto Inst Aerosp Studies Space & Terr Autonomous Robot Syst Lab N York ON M3H 5T6 Canada
We present a novel method to fuse the power of deep networks with the computational efficiency of geometric and probabilistic localization algorithms. In contrast to other methods that completely replace a classical v... 详细信息
来源: 评论
learning to Predict Ego-Vehicle Poses for Sampling-Based Nonholonomic Motion Planning
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 1053-1060页
作者: Banzhaf, Holger Sanzenbacher, Paul Baumann, Ulrich Zoellner, J. Marius Robert Bosch GmbH Corp Res Automated Driving D-71272 Renningen Germany FZI Res Ctr Informat Technol D-76131 Karlsruhe Germany
Sampling-based motion planning is an effective tool to compute safe trajectories for automated vehicles in complex environments. However, a fast convergence to the optimal solution can only be ensured with the use of ... 详细信息
来源: 评论
learning a Low-Dimensional Representation of a Safe Region for Safe Reinforcement learning on Dynamical Systems
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2023年 第5期34卷 2513-2527页
作者: Zhou, Zhehua Oguz, Ozgur S. Leibold, Marion Buss, Martin Tech Univ Munich Chair Automat Control Engn D-80290 Munich Germany Univ Stuttgart Max Planck Inst Intelligent Syst D-70569 Stuttgart Germany
For the safe application of reinforcement learning algorithms to high-dimensional nonlinear dynamical systems, a simplified system model is used to formulate a safe reinforcement learning (SRL) framework. Based on the... 详细信息
来源: 评论
Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot Locomotion
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 3642-3649页
作者: Gangapurwala, Siddhant Mitchell, Alexander Havoutis, Ioannis Univ Oxford Oxford Robot Inst Dynam Robots Syst Grp Oxford OX1 2JD England
deep reinforcement learning (RL) uses model-free techniques to optimize task-specific control policies. Despite having emerged as a promising approach for complex problems, RL is still hard to use reliably for real-wo... 详细信息
来源: 评论
Normalization in Training U-Net for 2-D Biomedical Semantic Segmentation
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 1792-1799页
作者: Zhou, Xiao-Yun Yang, Guang-Zhong Imperial Coll London Hamlyn Ctr Robot Surg London SW7 2AZ England
Two-dimensional (2-D) biomedical semantic segmentation is important for robotic vision in surgery. Segmentation methods based on deep convolutional neural network (DCNN) can out-perform conventional methods in terms o... 详细信息
来源: 评论
SGANVO: Unsupervised deep Visual Odometry and Depth Estimation With Stacked Generative Adversarial Networks
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 4431-4437页
作者: Feng, Tuo Gu, Dongbing Univ Essex Sch Comp Sci & Elect Engn Colchester CO4 3SQ Essex England
Recently end-to-end unsupervised deep learning methods have demonstrated an impressive performance for visual depth and ego-motion estimation tasks. These data-based learning methods do not rely on the same limiting a... 详细信息
来源: 评论