咨询与建议

限定检索结果

文献类型

  • 212 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 221 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 221 篇 工学
    • 215 篇 控制科学与工程
    • 209 篇 电气工程
    • 13 篇 计算机科学与技术...
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 软件工程
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 221 篇 deep learning in...
  • 23 篇 visual learning
  • 20 篇 perception for g...
  • 19 篇 task analysis
  • 18 篇 motion and path ...
  • 18 篇 localization
  • 18 篇 computer vision ...
  • 16 篇 visual-based nav...
  • 16 篇 robots
  • 15 篇 object detection
  • 14 篇 segmentation and...
  • 14 篇 semantic scene u...
  • 12 篇 computer vision ...
  • 12 篇 training
  • 11 篇 learning from de...
  • 11 篇 force and tactil...
  • 11 篇 learning and ada...
  • 11 篇 slam
  • 10 篇 grasping
  • 9 篇 robot sensing sy...

机构

  • 6 篇 hong kong univ s...
  • 5 篇 univ michigan de...
  • 5 篇 georgia inst tec...
  • 5 篇 univ perugia dep...
  • 4 篇 imperial coll lo...
  • 4 篇 stanford univ st...
  • 4 篇 natl univ singap...
  • 3 篇 swiss fed inst t...
  • 3 篇 univ hong kong d...
  • 3 篇 carnegie mellon ...
  • 3 篇 city univ hong k...
  • 3 篇 kth royal inst t...
  • 3 篇 univ michigan de...
  • 2 篇 seoul natl univ ...
  • 2 篇 univ adelaide sc...
  • 2 篇 georgia inst tec...
  • 2 篇 mit comp sci & a...
  • 2 篇 karlsruhe inst t...
  • 2 篇 swiss fed inst t...
  • 2 篇 carnegie mellon ...

作者

  • 8 篇 liu ming
  • 5 篇 costante gabriel...
  • 5 篇 yang guang-zhong
  • 5 篇 bohg jeannette
  • 5 篇 calandra roberto
  • 5 篇 johnson-roberson...
  • 3 篇 kumar vijay
  • 3 篇 chen steven w.
  • 3 篇 sartoretti guill...
  • 3 篇 tai lei
  • 3 篇 rus daniela
  • 3 篇 zhou xiao-yun
  • 3 篇 pan jia
  • 3 篇 vasudevan ram
  • 3 篇 davison andrew j...
  • 3 篇 choi changhyun
  • 3 篇 folkesson john
  • 3 篇 kelly jonathan
  • 3 篇 kawai hisashi
  • 3 篇 magassouba aly

语言

  • 221 篇 英文
检索条件"主题词=deep learning in robotics and automation"
221 条 记 录,以下是191-200 订阅
排序:
DroNet: learning to Fly by Driving
收藏 引用
IEEE robotics AND automation LETTERS 2018年 第2期3卷 1088-1095页
作者: Loquercio, Antonio Maqueda, Ana I. del-Blanco, Carlos R. Scaramuzza, Davide Univ Zurich Robot & Percept Grp Dept Informat CH-8092 Zurich Switzerland Univ Zurich Dept Neuroinformat CH-8092 Zurich Switzerland ETH CH-8092 Zurich Switzerland Univ Politecn Madrid Grp Tratamiento Imagenes Informat Proc & Telecommun Ctr E-28040 Madrid Spain Univ Politecn Madrid ETSI Telecomunicac E-28040 Madrid Spain
Civilian drones are soon expected to be used in a wide variety of tasks, such as aerial surveillance, delivery, or monitoring of existing architectures. Nevertheless, their deployment in urban environments has so far ... 详细信息
来源: 评论
Fully Convolutional Networks With Sequential Information for Robust Crop and Weed Detection in Precision Farming
收藏 引用
IEEE robotics AND automation LETTERS 2018年 第4期3卷 2870-2877页
作者: Lottes, Philipp Behley, Jens Milioto, Andres Stachniss, Cyrill Univ Bonn Inst Geodesy & Geoinformat D-53113 Bonn Germany
Reducing the use of agrochemicals is an important component toward sustainable agriculture. Robots that can perform targeted weed control offer the potential to contribute to this goal, for example, through specialize... 详细信息
来源: 评论
learning to Segment Generic Handheld Objects Using Class-Agnostic deep Comparison and Segmentation Network
收藏 引用
IEEE robotics AND automation LETTERS 2018年 第4期3卷 3844-3851页
作者: Chaudhary, Krishneel Wada, Kentaro Chen, Xiangyu Kimura, Kohei Okada, Kei Inaba, Masayuki Univ Tokyo Grad Sch Informat Sci & Technol JSK Lab Tokyo 1138656 Japan
learning unknown objects in the environment is important for detection and manipulation tasks. Prior to learning the unknown objects the ground-truth labels have to be provided. The data annotation or labeling can be ... 详细信息
来源: 评论
Sequence-to-Sequence Model for Trajectory Planning of Nonprehensile Manipulation Including Contact Model
收藏 引用
IEEE robotics AND automation LETTERS 2018年 第4期3卷 3606-3613页
作者: Kutsuzawa, Kyo Sakaino, Sho Tsuji, Toshiaki Saitama Univ Grad Sch Sci & Engn Saitama 3388570 Japan Saitama Univ JST PRESTO Saitama 3388570 Japan
Nonprehensile manipulation is necessary for robots to operate in humans' daily lives. As nonprehensile manipulation should satisfy both kinematics and dynamics requirements simultaneously, it is difficult to manip... 详细信息
来源: 评论
Detect Globally, Label Locally: learning Accurate 6-DOF Object Pose Estimation by Joint Segmentation and Coordinate Regression
收藏 引用
IEEE robotics AND automation LETTERS 2018年 第4期3卷 3960-3967页
作者: Nigam, Apurv Penate-Sanchez, Adrian Agapito, Lourdes UCL Dept Comp Sci London NW1 9HZ England ANI Technol Pvt Ltd Dehra Dun 248006 India Univ Oxford Oxford Robot Inst Oxford OX2 6NN England
Coordinate regression has established itself as one of the most successful current trends in model-based 6 degree of freedom (6-DOF) object pace estimation from a single image. The underlying idea is to train a system... 详细信息
来源: 评论
Super-High-Purity Seed Sorter Using Low-Latency Image-Recognition Based on deep learning
收藏 引用
IEEE robotics AND automation LETTERS 2018年 第4期3卷 3035-3042页
作者: Heo, Young Jin Kim, Se Jin Kim, Dayeon Lee, Keondo Chung, Wan Kyun Pohang Univ Sci & Technol Dept Mech Engn Pohang Si 37673 South Korea
Most commercial optical sorting systems are designed to achieve high throughput, so they use a naive low-latency image processing for object identification. These naive low-latency algorithms have difficulty in accura... 详细信息
来源: 评论
"Elbows Out"-Predictive Tracking of Partially Occluded Pose for Robot-Assisted Dressing
收藏 引用
IEEE robotics AND automation LETTERS 2018年 第4期3卷 3598-3605页
作者: Chance, Greg Jevtic, Aleksandar Caleb-Solly, Praminda Alenya, Guillem Torras, Carme Dogramadzi, Sanja Univ West England Bristol Robot Lab Bristol BS16 1QY Avon England UPC CSIC Inst Robot & Informat Ind Barcelona 08028 Spain
Robots that can assist in the activities of daily living, such as dressing, may support older adults, addressing the needs of an aging population in the face of a growing shortage of care professionals. Using depth ca... 详细信息
来源: 评论
Use of deep learning for Characterization of Microfluidic Soft Sensors
收藏 引用
IEEE robotics AND automation LETTERS 2018年 第2期3卷 873-880页
作者: Han, Seunghyun Kim, Taekyoung Kim, Dooyoung Park, Yong-Lae Jo, Sungho Korea Adv Inst Sci & Technol Sch Comp Daejeon 305701 South Korea Seoul Natl Univ Dept Mech & Aerosp Engn Seoul 08826 South Korea Seoul Natl Univ Inst Adv Machines & Design Seoul 08826 South Korea
Soft sensors made of highly deformable materials are one of the enabling technologies to various soft robotic systems, such as soft mobile robots, soft wearable robots, and soft grippers. However, major drawbacks of s... 详细信息
来源: 评论
Inference Over Distribution of Posterior Class Probabilities for Reliable Bayesian Classification and Object-Level Perception
收藏 引用
IEEE robotics AND automation LETTERS 2018年 第4期3卷 4329-4336页
作者: Tchuiev, Vladimir Indelman, Vadim Technion Israel Inst Technol Dept Aerosp Engn IL-32000 Haifa Israel
State of the art Bayesian classification approaches typically maintain a posterior distribution over possible classes given available sensor observations (images). Yet, while these approaches fuse all classifier outpu... 详细信息
来源: 评论
Paired Recurrent Autoencoders for Bidirectional Translation Between Robot Actions and Linguistic Descriptions
收藏 引用
IEEE robotics AND automation LETTERS 2018年 第4期3卷 3441-3448页
作者: Yamada, Tatsuro Matsunaga, Hiroyuki Ogata, Tetsuya Waseda Univ Dept Intermedia Art & Sci Tokyo 1698555 Japan
We propose a novel deep learning framework for bidirectional translation between robot actions and their linguistic descriptions. Our model consists of two recurrent autoencoders (RAEs). One RAE learns to encode actio... 详细信息
来源: 评论