咨询与建议

限定检索结果

文献类型

  • 212 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 221 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 221 篇 工学
    • 215 篇 控制科学与工程
    • 209 篇 电气工程
    • 13 篇 计算机科学与技术...
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 软件工程
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 221 篇 deep learning in...
  • 23 篇 visual learning
  • 20 篇 perception for g...
  • 19 篇 task analysis
  • 18 篇 motion and path ...
  • 18 篇 localization
  • 18 篇 computer vision ...
  • 16 篇 visual-based nav...
  • 16 篇 robots
  • 15 篇 object detection
  • 14 篇 segmentation and...
  • 14 篇 semantic scene u...
  • 12 篇 computer vision ...
  • 12 篇 training
  • 11 篇 learning from de...
  • 11 篇 force and tactil...
  • 11 篇 learning and ada...
  • 11 篇 slam
  • 10 篇 grasping
  • 9 篇 robot sensing sy...

机构

  • 6 篇 hong kong univ s...
  • 5 篇 univ michigan de...
  • 5 篇 georgia inst tec...
  • 5 篇 univ perugia dep...
  • 4 篇 imperial coll lo...
  • 4 篇 stanford univ st...
  • 4 篇 natl univ singap...
  • 3 篇 swiss fed inst t...
  • 3 篇 univ hong kong d...
  • 3 篇 carnegie mellon ...
  • 3 篇 city univ hong k...
  • 3 篇 kth royal inst t...
  • 3 篇 univ michigan de...
  • 2 篇 seoul natl univ ...
  • 2 篇 univ adelaide sc...
  • 2 篇 georgia inst tec...
  • 2 篇 mit comp sci & a...
  • 2 篇 karlsruhe inst t...
  • 2 篇 swiss fed inst t...
  • 2 篇 carnegie mellon ...

作者

  • 8 篇 liu ming
  • 5 篇 costante gabriel...
  • 5 篇 yang guang-zhong
  • 5 篇 bohg jeannette
  • 5 篇 calandra roberto
  • 5 篇 johnson-roberson...
  • 3 篇 kumar vijay
  • 3 篇 chen steven w.
  • 3 篇 sartoretti guill...
  • 3 篇 tai lei
  • 3 篇 rus daniela
  • 3 篇 zhou xiao-yun
  • 3 篇 pan jia
  • 3 篇 vasudevan ram
  • 3 篇 davison andrew j...
  • 3 篇 choi changhyun
  • 3 篇 folkesson john
  • 3 篇 kelly jonathan
  • 3 篇 kawai hisashi
  • 3 篇 magassouba aly

语言

  • 221 篇 英文
检索条件"主题词=deep learning in robotics and automation"
221 条 记 录,以下是21-30 订阅
排序:
Fast Panoptic Segmentation Network
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 1742-1749页
作者: de Geus, Daan Meletis, Panagiotis Dubbelman, Gijs Eindhoven Univ Technol Dept Elect Engn SPS VCA Grp Mobile Percept Syst Res lab NL-5600 MB Eindhoven Netherlands
In this work, we present an end-to-end network for fast panoptic segmentation. This network, called Fast Panoptic Segmentation Network (FPSNet), does not require computationally costly instance mask predictions or rul... 详细信息
来源: 评论
learning Transformable and Plannable se(3) Features for Scene Imitation of a Mobile Service Robot
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 1664-1671页
作者: Park, J. Hyeon Kim, Jigang Jang, Youngseok Jang, Inkyu Kim, H. Jin Seoul Natl Univ Dept Mech & Aerosp Engn Seoul 08826 South Korea Seoul Natl Univ Automat & Syst Res Inst ASRI Seoul 08826 South Korea
deep neural networks facilitate visuosensory inputs for robotic systems. However, the features encoded in a network without specific constraints have little physical meaning. In this research, we add constraints on th... 详细信息
来源: 评论
Robot-Assisted Training in Laparoscopy Using deep Reinforcement learning
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 485-492页
作者: Tan, Xiaoyu Chng, Chin-Boon Su, Ye Lim, Kah-Bin Chui, Chee-Kong Natl Univ Singapore Dept Mech Engn Singapore 119077 Singapore
Minimally invasive surgery (MIS) is increasingly becoming a vital method of reducing surgical trauma and significantly improving postoperative recovery. However, skillful handling of surgical instruments used in MIS, ... 详细信息
来源: 评论
Denoising IMU Gyroscopes With deep learning for Open-Loop Attitude Estimation
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第3期5卷 4796-4803页
作者: Brossard, Martin Bonnabel, Silvere Barrau, Axel PSL Res Univ MINES ParisTech Ctr Robot F-75006 Paris France Univ New Caledonia ISEA Noumea 98800 New Caledonia Safran Tech Grp Safran F-78117 Magny Les Hameaux Chateaufort France
This article proposes a learning method for denoising gyroscopes of Inertial Measurement Units (IMUs) using ground truth data, and estimating in real time the orientation (attitude) of a robot in dead reckoning. The o... 详细信息
来源: 评论
Convolutional Autoencoder for Feature Extraction in Tactile Sensing
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 3671-3678页
作者: Polic, Marsela Krajacic, Ivona Lepora, Nathan Orsag, Matko Univ Zagreb Fac Elect Engn & Comp Lab Robot & Intelligent Control Syst Zagreb 10000 Croatia Univ Bristol Dept Engn Math Bristol BS8 1UB Avon England Univ Bristol Bristol Robot Lab Bristol BS8 1UB Avon England
A common approach in the field of tactile robotics is the development of a new perception algorithm for each new application of existing hardware solutions. In this letter, we present a method of dimensionality reduct... 详细信息
来源: 评论
Real-Time Nonlinear Model Predictive Control of Robots Using a Graphics Processing Unit
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 1468-1475页
作者: Hyatt, Phillip Killpack, Marc D. Brigham Young Univ Mech Engn Dept Provo UT 84602 USA
In past robotics applications, Model Predictive Control (MPC) has often been limited to linear models and relatively short time horizons. In recent years however, research in optimization, optimal control, and simulat... 详细信息
来源: 评论
learning Robust Control Policies for End-to-End Autonomous Driving From Data-Driven Simulation
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 1143-1150页
作者: Amini, Alexander Gilitschenski, Igor Phillips, Jacob Moseyko, Julia Banerjee, Rohan Karaman, Sertac Rus, Daniela MIT Comp Sci & Artificial Intelligence Lab Cambridge MA 02142 USA MIT Lab Informat & Decis Syst Cambridge MA 02139 USA
In this work, we present a data-driven simulation and training engine capable of learning end-to-end autonomous vehicle control policies using only sparse rewards. By leveraging real, human-collected trajectories thro... 详细信息
来源: 评论
DroNet: learning to Fly by Driving
收藏 引用
IEEE robotics AND automation LETTERS 2018年 第2期3卷 1088-1095页
作者: Loquercio, Antonio Maqueda, Ana I. del-Blanco, Carlos R. Scaramuzza, Davide Univ Zurich Robot & Percept Grp Dept Informat CH-8092 Zurich Switzerland Univ Zurich Dept Neuroinformat CH-8092 Zurich Switzerland ETH CH-8092 Zurich Switzerland Univ Politecn Madrid Grp Tratamiento Imagenes Informat Proc & Telecommun Ctr E-28040 Madrid Spain Univ Politecn Madrid ETSI Telecomunicac E-28040 Madrid Spain
Civilian drones are soon expected to be used in a wide variety of tasks, such as aerial surveillance, delivery, or monitoring of existing architectures. Nevertheless, their deployment in urban environments has so far ... 详细信息
来源: 评论
Making Sense of Vision and Touch: learning Multimodal Representations for Contact-Rich Tasks
收藏 引用
IEEE TRANSACTIONS ON robotics 2020年 第3期36卷 582-596页
作者: Lee, Michelle A. Zhu, Yuke Zachares, Peter Tan, Matthew Srinivasan, Krishnan Savarese, Silvio Fei-Fei, Li Garg, Animesh Bohg, Jeannette Stanford Univ Dept Comp Sci Stanford CA 94305 USA Nvidia Res Santa Clara CA 95051 USA Univ Toronto Dept Comp Sci Toronto ON M5S 2E4 Canada
Contact-rich manipulation tasks in unstructured environments often require both haptic and visual feedback. It is nontrivial to manually design a robot controller that combines these modalities, which have very differ... 详细信息
来源: 评论
UniGrasp: learning a Unified Model to Grasp With Multifingered Robotic Hands
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 2286-2293页
作者: Shao, Lin Ferreira, Fabio Jorda, Mikael Nambiar, Varun Luo, Jianlan Solowjow, Eugen Ojea, Juan Aparicio Khatib, Oussama Bohg, Jeannette Stanford Univ SAIL Stanford CA 94305 USA Karlsruhe Inst Technol Inst Anthropomat & Robot D-76131 Karlsruhe Germany Univ Calif Berkeley Dept ME Berkeley CA 94720 USA Univ Calif Berkeley Dept EECS Berkeley CA 94720 USA Siemens Corp Technol Berkeley CA 94709 USA
To achieve a successful grasp, gripper attributes such as its geometry and kinematics play a role as important as the object geometry. The majority of previous work has focused on developing grasp methods that general... 详细信息
来源: 评论