咨询与建议

限定检索结果

文献类型

  • 212 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 221 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 221 篇 工学
    • 215 篇 控制科学与工程
    • 209 篇 电气工程
    • 13 篇 计算机科学与技术...
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 软件工程
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 221 篇 deep learning in...
  • 23 篇 visual learning
  • 20 篇 perception for g...
  • 19 篇 task analysis
  • 18 篇 motion and path ...
  • 18 篇 localization
  • 18 篇 computer vision ...
  • 16 篇 visual-based nav...
  • 16 篇 robots
  • 15 篇 object detection
  • 14 篇 segmentation and...
  • 14 篇 semantic scene u...
  • 12 篇 computer vision ...
  • 12 篇 training
  • 11 篇 learning from de...
  • 11 篇 force and tactil...
  • 11 篇 learning and ada...
  • 11 篇 slam
  • 10 篇 grasping
  • 9 篇 robot sensing sy...

机构

  • 6 篇 hong kong univ s...
  • 5 篇 univ michigan de...
  • 5 篇 georgia inst tec...
  • 5 篇 univ perugia dep...
  • 4 篇 imperial coll lo...
  • 4 篇 stanford univ st...
  • 4 篇 natl univ singap...
  • 3 篇 swiss fed inst t...
  • 3 篇 univ hong kong d...
  • 3 篇 carnegie mellon ...
  • 3 篇 city univ hong k...
  • 3 篇 kth royal inst t...
  • 3 篇 univ michigan de...
  • 2 篇 seoul natl univ ...
  • 2 篇 univ adelaide sc...
  • 2 篇 georgia inst tec...
  • 2 篇 mit comp sci & a...
  • 2 篇 karlsruhe inst t...
  • 2 篇 swiss fed inst t...
  • 2 篇 carnegie mellon ...

作者

  • 8 篇 liu ming
  • 5 篇 costante gabriel...
  • 5 篇 yang guang-zhong
  • 5 篇 bohg jeannette
  • 5 篇 calandra roberto
  • 5 篇 johnson-roberson...
  • 3 篇 kumar vijay
  • 3 篇 chen steven w.
  • 3 篇 sartoretti guill...
  • 3 篇 tai lei
  • 3 篇 rus daniela
  • 3 篇 zhou xiao-yun
  • 3 篇 pan jia
  • 3 篇 vasudevan ram
  • 3 篇 davison andrew j...
  • 3 篇 choi changhyun
  • 3 篇 folkesson john
  • 3 篇 kelly jonathan
  • 3 篇 kawai hisashi
  • 3 篇 magassouba aly

语言

  • 221 篇 英文
检索条件"主题词=deep learning in robotics and automation"
221 条 记 录,以下是41-50 订阅
排序:
Low-Level Control of a Quadrotor With deep Model-Based Reinforcement learning
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第4期4卷 4224-4230页
作者: Lambert, Nathan O. Drewe, Daniel S. Yaconelli, Joseph Levine, Sergey Calandra, Roberto Pister, Kristofer S. J. Univ Calif Berkeley Dept Elect Engn & Comp Sci Berkeley CA 94720 USA Univ Oregon Eugene OR 97403 USA Facebook AI Res Menlo Pk CA 94025 USA
Designing effective low-level robot controllers often entail platform-specific implementations that require manual heuristic parameter tuning, significant system knowledge, or long design times. With the rising number... 详细信息
来源: 评论
RSL-Net: Localising in Satellite Images From a Radar on the Ground
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 1087-1094页
作者: Tang, Tim Yuqing De Martini, Daniele Barnes, Dan Newman, Paul Univ Oxford Oxford Robot Inst Oxford OX1 2JD England
This letter is about localising a vehicle in an overhead image using FMCW radar mounted on a ground vehicle. FMCW radar offers extraordinary promise and efficacy for vehicle localisation. It is impervious to all weath... 详细信息
来源: 评论
learning to Segment Generic Handheld Objects Using Class-Agnostic deep Comparison and Segmentation Network
收藏 引用
IEEE robotics AND automation LETTERS 2018年 第4期3卷 3844-3851页
作者: Chaudhary, Krishneel Wada, Kentaro Chen, Xiangyu Kimura, Kohei Okada, Kei Inaba, Masayuki Univ Tokyo Grad Sch Informat Sci & Technol JSK Lab Tokyo 1138656 Japan
learning unknown objects in the environment is important for detection and manipulation tasks. Prior to learning the unknown objects the ground-truth labels have to be provided. The data annotation or labeling can be ... 详细信息
来源: 评论
Self-Supervised Linear Motion Deblurring
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 2475-2482页
作者: Liu, Peidong Janai, Joel Pollefeys, Marc Sattler, Torsten Geiger, Andreas Swiss Fed Inst Technol Comp Vis & Geometry Grp Dept Comp Sci CH-8092 Zurich Switzerland Max Planck Inst Intelligent Syst Autonomous Vis Grp D-41296 Tubingen Germany Microsoft Mixed Real & Artificial Intelligence La CH-8001 Zurich Switzerland Chalmers Univ Technol Comp Vis & Med Image Anal Grp S-41296 Gothenburg Sweden
Motion blurry images challenge many computer vision algorithms, e.g., feature detection, motion estimation, or object recognition. deep convolutional neural networks are state-of-the-art for image deblurring. However,... 详细信息
来源: 评论
learning Navigation Behaviors End-to-End With AutoRL
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 2007-2014页
作者: Chiang, Hao-Tien Lewis Faust, Aleksandra Fiser, Marek Francis, Anthony Google AI Google Robot Mountain View CA 94043 USA
We learn end-to-end point-to-point and pathfollowing navigation behaviors that avoid moving obstacles. These policies receive noisy lidar observations and output robot linear and angular velocities. The policies are t... 详细信息
来源: 评论
Cross-Domain Motion Transfer via Safety-Aware Shared Latent Space Modeling
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 2634-2641页
作者: Choi, Sungjoon Kim, Joohyung Disney Res Glendale CA 91201 USA Univ Illinois Champaign IL 61820 USA
This letter presents a data-driven motion retargeting method with safety considerations. In particular, we focus on handling self-collisions while transferring poses between different domains. To this end, we first pr... 详细信息
来源: 评论
Sequence-to-Sequence Model for Trajectory Planning of Nonprehensile Manipulation Including Contact Model
收藏 引用
IEEE robotics AND automation LETTERS 2018年 第4期3卷 3606-3613页
作者: Kutsuzawa, Kyo Sakaino, Sho Tsuji, Toshiaki Saitama Univ Grad Sch Sci & Engn Saitama 3388570 Japan Saitama Univ JST PRESTO Saitama 3388570 Japan
Nonprehensile manipulation is necessary for robots to operate in humans' daily lives. As nonprehensile manipulation should satisfy both kinematics and dynamics requirements simultaneously, it is difficult to manip... 详细信息
来源: 评论
learning Modular Robot Control Policies
收藏 引用
IEEE TRANSACTIONS ON robotics 2023年 第5期39卷 4095-4113页
作者: Whitman, Julian Travers, Matthew Choset, Howie Carnegie Mellon Univ Robot Inst Pittsburgh PA 15213 USA
Modular robots can be rearranged into a new design, perhaps each day, to handle a wide variety of tasks by forming a customized robot for each new task. However, reconfiguring just the mechanism is not sufficient: eac... 详细信息
来源: 评论
iART: learning From Demonstration for Assisted Robotic Therapy Using LSTM
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 477-484页
作者: Pareek, Shrey Kesavadas, Thenkurussi Univ Illinois Dept Ind & Enterprise Syst Engn Champaign IL 61820 USA
In this letter, we present an intelligent Assistant for Robotic Therapy (iART), that provides robotic assistance during 3D trajectory tracking tasks. We propose a novel LSTM-based robot learning from demonstration (Lf... 详细信息
来源: 评论
Detect Globally, Label Locally: learning Accurate 6-DOF Object Pose Estimation by Joint Segmentation and Coordinate Regression
收藏 引用
IEEE robotics AND automation LETTERS 2018年 第4期3卷 3960-3967页
作者: Nigam, Apurv Penate-Sanchez, Adrian Agapito, Lourdes UCL Dept Comp Sci London NW1 9HZ England ANI Technol Pvt Ltd Dehra Dun 248006 India Univ Oxford Oxford Robot Inst Oxford OX2 6NN England
Coordinate regression has established itself as one of the most successful current trends in model-based 6 degree of freedom (6-DOF) object pace estimation from a single image. The underlying idea is to train a system... 详细信息
来源: 评论