咨询与建议

限定检索结果

文献类型

  • 212 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 221 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 221 篇 工学
    • 215 篇 控制科学与工程
    • 209 篇 电气工程
    • 13 篇 计算机科学与技术...
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 软件工程
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 221 篇 deep learning in...
  • 23 篇 visual learning
  • 20 篇 perception for g...
  • 19 篇 task analysis
  • 18 篇 motion and path ...
  • 18 篇 localization
  • 18 篇 computer vision ...
  • 16 篇 visual-based nav...
  • 16 篇 robots
  • 15 篇 object detection
  • 14 篇 segmentation and...
  • 14 篇 semantic scene u...
  • 12 篇 computer vision ...
  • 12 篇 training
  • 11 篇 learning from de...
  • 11 篇 force and tactil...
  • 11 篇 learning and ada...
  • 11 篇 slam
  • 10 篇 grasping
  • 9 篇 robot sensing sy...

机构

  • 6 篇 hong kong univ s...
  • 5 篇 univ michigan de...
  • 5 篇 georgia inst tec...
  • 5 篇 univ perugia dep...
  • 4 篇 imperial coll lo...
  • 4 篇 stanford univ st...
  • 4 篇 natl univ singap...
  • 3 篇 swiss fed inst t...
  • 3 篇 univ hong kong d...
  • 3 篇 carnegie mellon ...
  • 3 篇 city univ hong k...
  • 3 篇 kth royal inst t...
  • 3 篇 univ michigan de...
  • 2 篇 seoul natl univ ...
  • 2 篇 univ adelaide sc...
  • 2 篇 georgia inst tec...
  • 2 篇 mit comp sci & a...
  • 2 篇 karlsruhe inst t...
  • 2 篇 swiss fed inst t...
  • 2 篇 carnegie mellon ...

作者

  • 8 篇 liu ming
  • 5 篇 costante gabriel...
  • 5 篇 yang guang-zhong
  • 5 篇 bohg jeannette
  • 5 篇 calandra roberto
  • 5 篇 johnson-roberson...
  • 3 篇 kumar vijay
  • 3 篇 chen steven w.
  • 3 篇 sartoretti guill...
  • 3 篇 tai lei
  • 3 篇 rus daniela
  • 3 篇 zhou xiao-yun
  • 3 篇 pan jia
  • 3 篇 vasudevan ram
  • 3 篇 davison andrew j...
  • 3 篇 choi changhyun
  • 3 篇 folkesson john
  • 3 篇 kelly jonathan
  • 3 篇 kawai hisashi
  • 3 篇 magassouba aly

语言

  • 221 篇 英文
检索条件"主题词=deep learning in robotics and automation"
221 条 记 录,以下是81-90 订阅
排序:
learning to Optimally Segment Point Clouds
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 875-882页
作者: Hu, Peiyun Held, David Ramanan, Deva Carnegie Mellon Univ Inst Robot Pittsburgh PA 15213 USA Argo AI Pittsburgh PA 15213 USA
We focus on the problem of class-agnostic instance segmentation of LiDAR point clouds. We propose an approach that combines graph-theoretic search with data-driven learning: it searches over a set of candidate segment... 详细信息
来源: 评论
Towards Generalization in Target-Driven Visual Navigation by Using deep Reinforcement learning
收藏 引用
IEEE TRANSACTIONS ON robotics 2020年 第5期36卷 1546-1561页
作者: Devo, Alessandro Mezzetti, Giacomo Costante, Gabriele Fravolini, Mario L. Valigi, Paolo Univ Perugia Dept Engn I-06125 Perugia Italy
Among the main challenges in robotics, target-driven visual navigation has gained increasing interest in recent years. In this task, an agent has to navigate in an environment to reach a user specified target, only th... 详细信息
来源: 评论
A Two-Stage Reinforcement learning Approach for Multi-UAV Collision Avoidance Under Imperfect Sensing
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 3098-3105页
作者: Wang, Dawei Fan, Tingxiang Han, Tao Pan, Jia Univ Hong Kong Dept Comp Sci Hong Kong Peoples R China City Univ Hong Kong Dept Biomed Engn Hong Kong Peoples R China
Unlike autonomous ground vehicles (AGVs), unmanned aerial vehicles (UAVs) have a higher dimensional configuration space, which makes the motion planning of multi-UAVs a challenging task. In addition, uncertainties and... 详细信息
来源: 评论
DIGIT: A Novel Design for a Low-Cost Compact High-Resolution Tactile Sensor With Application to In-Hand Manipulation
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第3期5卷 3838-3845页
作者: Lambeta, Mike Chou, Po-Wei Tian, Stephen Yang, Brian Maloon, Benjamin Most, Victoria Rose Stroud, Dave Santos, Raymond Byagowi, Ahmad Kammerer, Gregg Jayaraman, Dinesh Calandra, Roberto Facebook Menlo Pk CA 94025 USA
Despite decades of research, general purpose in-hand manipulation remains one of the unsolved challenges of robotics. One of the contributing factors that limit current robotic manipulation systems is the difficulty o... 详细信息
来源: 评论
Simultaneous Policy and Discrete Communication learning for Multi-Agent Cooperation
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 2498-2505页
作者: Freed, Benjamin Sartoretti, Guillaume Choset, Howie Carnegie Mellon Univ Robot Inst Pittsburgh PA 15213 USA Natl Univ Singapore Dept Mech Engn Singapore 117575 Singapore
Decentralized multi-agent reinforcement learning has been demonstrated to be an effective solution to large multi-agent control problems. However, agents typically can only make decisions based on local information, r... 详细信息
来源: 评论
Shear, Torsion and Pressure Tactile Sensor via Plastic Optofiber Guided Imaging
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 2618-2625页
作者: Baimukashev, Daulet Kappassov, Zhanat Varol, Huseyin Atakan Nazarbayev Univ Inst Smart Syst & Artificial Intelligence Nur Sultan 010000 Kazakhstan Nazarbayev Univ Dept Robot & Mechatron Nur Sultan 010000 Kazakhstan
Object manipulation performed by robots refers to the art of controlling the shape and location of an object through force constraints with robot end-effectors, both robot hands, and grippers. The success of task exec... 详细信息
来源: 评论
Aerial Single-View Depth Completion With Image-Guided Uncertainty Estimation
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 1055-1062页
作者: Teixeira, Lucas Oswald, Martin R. Pollefeys, Marc Chli, Margarita Swiss Fed Inst Technol Vis Robot Lab CH-8050 Zurich Switzerland Swiss Fed Inst Technol Comp Vis & Geometry Grp CH-8092 Zurich Switzerland Microsoft Res CH-8001 Zurich Switzerland
On the pursuit of autonomous flying robots, the scientific community has been developing onboard real-time algorithms for localisation, mapping and planning. Despite recent progress, the available solutions still lack... 详细信息
来源: 评论
High-Speed Autonomous Drifting With deep Reinforcement learning
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 1247-1254页
作者: Cai, Peide Mei, Xiaodong Tai, Lei Sun, Yuxiang Liu, Ming Hong Kong Univ Sci & Technol Hong Kong Peoples R China Alibaba Grp AI Lab Hangzhou 311000 Peoples R China
Drifting is a complicated task for autonomous vehicle control. Most traditional methods in this area are based on motion equations derived by the understanding of vehicle dynamics, which is difficult to be modeled pre... 详细信息
来源: 评论
learning to Collaborate From Simulation for Robot-Assisted Dressing
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 2746-2753页
作者: Clegg, Alexander Erickson, Zackory Grady, Patrick Turk, Greg Kemp, Charles C. Liu, C. Karen Georgia Inst Technol Atlanta GA 30332 USA Facebook Artificial Intelligence Res Lawrenceville GA 30044 USA Stanford Univ Stanford CA 94305 USA
We investigated the application of haptic feedback control and deep reinforcement learning (DRL) to robot-assisted dressing. Our method uses DRL to simultaneously train human and robot control policies as separate neu... 详细信息
来源: 评论
learning One-Shot Imitation From Humans Without Humans
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 3533-3539页
作者: Bonardi, Alessandro James, Stephen Davison, Andrew J. Imperial Coll London Dept Comp London SW7 2BU England Imperial Coll London Dyson Robot Lab London SW7 2BU England
Humans can naturally learn to execute a new task by seeing it performed by other individuals once, and then reproduce it in a variety of configurations. Endowing robots with this ability of imitating humans from third... 详细信息
来源: 评论