咨询与建议

限定检索结果

文献类型

  • 31 篇 期刊文献
  • 21 篇 会议

馆藏范围

  • 52 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 50 篇 工学
    • 30 篇 计算机科学与技术...
    • 21 篇 电气工程
    • 10 篇 信息与通信工程
    • 4 篇 仪器科学与技术
    • 3 篇 控制科学与工程
    • 3 篇 软件工程
    • 3 篇 生物工程
    • 2 篇 石油与天然气工程
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
    • 1 篇 船舶与海洋工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
    • 1 篇 安全科学与工程
  • 8 篇 理学
    • 5 篇 物理学
    • 3 篇 生物学
    • 2 篇 化学
  • 4 篇 农学
    • 2 篇 作物学
  • 4 篇 医学
    • 3 篇 临床医学
    • 1 篇 特种医学
    • 1 篇 医学技术(可授医学...
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 1 篇 文学

主题

  • 52 篇 denoising auto-e...
  • 8 篇 deep learning
  • 4 篇 machine learning
  • 4 篇 convolutional ne...
  • 3 篇 noise reduction
  • 3 篇 attention mechan...
  • 2 篇 chime4
  • 2 篇 lstm
  • 2 篇 transfer learnin...
  • 2 篇 auto-encoder
  • 2 篇 heat kernel sign...
  • 2 篇 multi-task learn...
  • 2 篇 vessel detection
  • 2 篇 generative adver...
  • 2 篇 random forests
  • 2 篇 neural network
  • 2 篇 multilayer perce...
  • 2 篇 heat diffusion
  • 2 篇 computational im...
  • 2 篇 3d shape retriev...

机构

  • 2 篇 univ texas austi...
  • 2 篇 anhui univ sch c...
  • 1 篇 anhui univ inst ...
  • 1 篇 indian inst info...
  • 1 篇 univ technol & a...
  • 1 篇 univ nantes ecol...
  • 1 篇 univ mons numedi...
  • 1 篇 univ exeter dept...
  • 1 篇 liaoning univ sc...
  • 1 篇 guangdong multim...
  • 1 篇 shahid sattari a...
  • 1 篇 princess summaya...
  • 1 篇 northeastern uni...
  • 1 篇 zijin zhikong xi...
  • 1 篇 north bengal med...
  • 1 篇 shanghai maritim...
  • 1 篇 kunming key lab ...
  • 1 篇 beijing univ pos...
  • 1 篇 peking univ sch ...
  • 1 篇 nanjing univ aer...

作者

  • 2 篇 dupont stephane
  • 2 篇 zhu fan
  • 2 篇 fang yi
  • 2 篇 dai guoxian
  • 2 篇 ke ziqi
  • 2 篇 chen wei
  • 2 篇 pironkov gueorgu...
  • 2 篇 wood sean u. n.
  • 2 篇 xie jin
  • 1 篇 tang lei
  • 1 篇 ju li
  • 1 篇 liu jian-wei
  • 1 篇 li sheng
  • 1 篇 debdoot sheet
  • 1 篇 vikalo hanis
  • 1 篇 liu hongfu
  • 1 篇 cao wenming
  • 1 篇 cao rupeng
  • 1 篇 choi sang-il
  • 1 篇 liu wangwang

语言

  • 50 篇 英文
  • 2 篇 其他
检索条件"主题词=denoising auto-encoder"
52 条 记 录,以下是41-50 订阅
排序:
Deep Neural Network and Random Forest Hybrid Architecture for Learning to Detect Retinal Vessels in Fundus Images  37
Deep Neural Network and Random Forest Hybrid Architecture fo...
收藏 引用
37th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC)
作者: Maji, Debapriya Santara, Anirban Ghosh, Sambuddha Sheet, Debdoot Mitra, Pabitra Indian Inst Technol Kharagpur Kharagpur 721302 W Bengal India North Bengal Med Coll & Hosp Dept Ophthalmol Darjeeling India
Vision impairment due to pathological damage of the retina can largely be prevented through periodic screening using fundus color imaging. However the challenge with large-scale screening is the inability to exhaustiv... 详细信息
来源: 评论
REAL-TIME RADIO MODULATION CLASSIFICATION WITH AN LSTM auto-encoder
REAL-TIME RADIO MODULATION CLASSIFICATION WITH AN LSTM AUTO-...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Ke, Ziqi Vikalo, Hanis Univ Texas Austin Dept Elect & Comp Engn Austin TX 78712 USA
Identifying modulation type of a received radio signal is a challenging problem encountered in many applications including radio interference mitigation and spectrum allocation. This problem is rendered challenging by... 详细信息
来源: 评论
Research on Intrusion Detection Model Based on DAE-XGBoost  10
Research on Intrusion Detection Model Based on DAE-XGBoost
收藏 引用
IEEE 10th International Conference on Information, Communication and Networks (ICICN)
作者: Gao Minghui Zhao Hang Ma Li Zhang Zhijun Lu Kai Cui Xudong He Jicheng Ning Zhiyan Beijing Kedong Elect Power Control Syst Co Ltd Beijing Peoples R China
The DAE-XGBoost detection model designed in this paper solves the problem that the detection effect of rare attack types in massive network data is not ideal. First, extract information from large-scale high-dimension... 详细信息
来源: 评论
VConv-DAE: Deep Volumetric Shape Learning Without Object Labels  14
VConv-DAE: Deep Volumetric Shape Learning Without Object Lab...
收藏 引用
14th European Conference on Computer Vision (ECCV)
作者: Sharma, Abhishek Grau, Oliver Fritz, Mario Intel Visual Comp Inst Saarbrucken Germany Intel Saarbrucken Germany Max Planck Inst Informat Saarbrucken Germany
With the advent of affordable depth sensors, 3D capture becomes more and more ubiquitous and already has made its way into commercial products. Yet, capturing the geometry or complete shapes of everyday objects using ... 详细信息
来源: 评论
A hybrid learning model based on auto-encoders  12
A hybrid learning model based on auto-encoders
收藏 引用
12th IEEE Conference on Industrial Electronics and Applications (ICIEA)
作者: Zhou, Ju Ju, Li Zhang, Xiaolong Wuhan Univ Sci & Technol Sch Comp Sci & Technol Hubei Key Lab Intelligent Informat Proc & Real Ti Wuhan 430065 Hubei Peoples R China
The existing auto-encoder algorithm has been used to do deep learning. A variety of improved auto-encoder algorithms still have their disadvantages. In order to improve the learning accuracy of the auto-encoder algori... 详细信息
来源: 评论
Imputing missing indoor air quality data with inverse mapping generative adversarial network
收藏 引用
BUILDING AND ENVIRONMENT 2022年 215卷 108896-108896页
作者: Wu, Zejun Ma, Chao Shi, Xiaochuan Wu, Libing Dong, Yi Stojmenovic, Milos Wuhan Univ Sch Cyber Sci & Engn Wuhan Peoples R China Chinese Acad Sci Inst Rock & Soil Mech Wuhan Peoples R China Lab Geomech & Geotech Engn Wuhan Peoples R China Singidunum Univ Dept Comp Sci & Elect Engn Belgrade Serbia
Sensors deployed all over the buildings are nowadays collecting a large amount of data, such as the Indoor Air Quality (IAQ) data which can provide valuable suggestions on improving indoor environments and energy cons... 详细信息
来源: 评论
Boosted Multifeature Learning for Cross-Domain Transfer
收藏 引用
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS 2015年 第3期11卷 35-35页
作者: Yang, Xiaoshan Zhang, Tianzhu Xu, Changsheng Yang, Ming-Hsuan Chinese Acad Sci Inst Automat Natl Lab Pattern Recognit Beijing 100190 Peoples R China China Singapore Inst Digital Media Singapore 119613 Singapore Univ Calif Dept Elect Engn & Comp Sci Merced CA 95334 USA
Conventional learning algorithm assumes that the training data and test data share a common distribution. However, this assumption will greatly hinder the practical application of the learned model for cross-domain da... 详细信息
来源: 评论
Hybrid -task learning for robust automatic speech recognition
收藏 引用
COMPUTER SPEECH AND LANGUAGE 2020年 64卷 101103-101103页
作者: Pironkov, Gueorgui Wood, Sean U. N. Dupont, Stephane Univ Mons Circuit Theory & Signal Proc Lab Mons Belgium Univ Sherbrooke Dept Elect & Comp Engn NECOTIS Sherbrooke PQ J1K 2R1 Canada
In order to properly train an automatic speech recognition system, speech with its annotated transcriptions is most often required. The amount of real annotated data recorded in noisy and reverberant conditions is ext... 详细信息
来源: 评论
JLGBMLoc-A Novel High-Precision Indoor Localization Method Based on LightGBM
收藏 引用
SENSORS 2021年 第8期21卷 2722-2722页
作者: Yin, Lu Ma, Pengcheng Deng, Zhongliang Beijing Univ Posts & Telecommun Sch Elect Engn Beijing 100876 Peoples R China
Wi-Fi based localization has become one of the most practical methods for mobile users in location-based services. However, due to the interference of multipath and high-dimensional sparseness of fingerprint data, wit... 详细信息
来源: 评论
An integrated data-driven scheme for the defense of typical cyber-physical attacks
收藏 引用
RELIABILITY ENGINEERING & SYSTEM SAFETY 2022年 第0期220卷 108257-108257页
作者: Wu, Shimeng Jiang, Yuchen Luo, Hao Zhang, Jiusi Yin, Shen Kaynak, Okyay Harbin Inst Technol Sch Astronaut Dept Control Sci & Engn Harbin Peoples R China Norwegian Univ Sci & Technol Fac Engn Dept Mech & Ind Engn N-7033 Trondheim Norway Bogazici Univ Dept Elect & Elect Engn Istanbul Turkey
With the frequent occurrence of safety incidents in cyber-physical systems (CPSs), great significance has been attached to the study of defense schemes against cyber-physical attacks. In this paper, an integrated data... 详细信息
来源: 评论