咨询与建议

限定检索结果

文献类型

  • 207 篇 期刊文献
  • 131 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 340 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 315 篇 工学
    • 176 篇 计算机科学与技术...
    • 123 篇 电气工程
    • 50 篇 信息与通信工程
    • 43 篇 控制科学与工程
    • 28 篇 软件工程
    • 25 篇 仪器科学与技术
    • 21 篇 电子科学与技术(可...
    • 18 篇 石油与天然气工程
    • 11 篇 动力工程及工程热...
    • 10 篇 机械工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 建筑学
    • 4 篇 化学工程与技术
    • 4 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 船舶与海洋工程
    • 3 篇 环境科学与工程(可...
  • 69 篇 理学
    • 32 篇 物理学
    • 25 篇 生物学
    • 9 篇 化学
    • 6 篇 数学
    • 6 篇 地球物理学
  • 44 篇 医学
    • 25 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 6 篇 特种医学
  • 23 篇 管理学
    • 19 篇 管理科学与工程(可...
  • 5 篇 农学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 340 篇 denoising autoen...
  • 64 篇 deep learning
  • 21 篇 convolutional ne...
  • 16 篇 noise reduction
  • 13 篇 neural network
  • 12 篇 machine learning
  • 11 篇 speech recogniti...
  • 10 篇 autoencoder
  • 8 篇 deep neural netw...
  • 8 篇 robust speech re...
  • 7 篇 feature enhancem...
  • 7 篇 transfer learnin...
  • 7 篇 anomaly detectio...
  • 7 篇 missing data
  • 7 篇 neural networks
  • 7 篇 classification
  • 7 篇 unsupervised lea...
  • 6 篇 collaborative fi...
  • 6 篇 fault diagnosis
  • 6 篇 remaining useful...

机构

  • 3 篇 nagaoka univ tec...
  • 3 篇 wuhan univ sch c...
  • 3 篇 acad sinica res ...
  • 2 篇 tsinghua univ de...
  • 2 篇 nanyang technol ...
  • 2 篇 natl taiwan univ...
  • 2 篇 univ calif irvin...
  • 2 篇 univ chinese aca...
  • 2 篇 donald bren scho...
  • 2 篇 nanyang technol ...
  • 2 篇 taiyuan univ tec...
  • 2 篇 harbin inst tech...
  • 2 篇 beijing univ pos...
  • 2 篇 univ sains malay...
  • 2 篇 nanjing univ sci...
  • 2 篇 tsinghua univ de...
  • 2 篇 tech univ libere...
  • 2 篇 natl inst techno...
  • 2 篇 univ calif irvin...
  • 2 篇 city univ hong k...

作者

  • 5 篇 wang longbiao
  • 5 篇 kai atsuhiko
  • 4 篇 tsao yu
  • 4 篇 ueda yuma
  • 3 篇 he fazhi
  • 3 篇 pan yiteng
  • 3 篇 schanze thomas
  • 3 篇 malek jiri
  • 3 篇 li jian
  • 3 篇 samann fars
  • 3 篇 liu bin
  • 2 篇 zhang tao
  • 2 篇 petr cerva
  • 2 篇 kang moses
  • 2 篇 baek jongbok
  • 2 篇 wang huawei
  • 2 篇 wang yuhao
  • 2 篇 padil khairul ha...
  • 2 篇 liu yang
  • 2 篇 teeparthi kiran

语言

  • 328 篇 英文
  • 11 篇 其他
  • 1 篇 中文
检索条件"主题词=denoising autoencoder"
340 条 记 录,以下是11-20 订阅
排序:
denoising autoencoder for Partial Discharge Identification in Instrument Transformers  31
Denoising Autoencoder for Partial Discharge Identification i...
收藏 引用
31st International Conference on Systems, Signals and Image Processing (IWSSIP)
作者: Crivelaro, Matheus Goes Rodrigues, Douglas Gifalli, Andre Papa, Joao Paulo Gonzales, Carlos Guilherme de Souza, Andre Nunes da Silva, Gustavo Vinicius Silveira Neto, Erasmo Sao Paulo State Univ Dept Elect Engn Bauru SP Brazil Sao Paulo State Univ Dept Comp Bauru SP Brazil ISA CTEEP Specialized Maintenance Ctr Bauru SP Brazil High Voltage Equipments HVEX Dept Elect Engn Itajuba Brazil
Analyzing Partial Discharge (PD) signals is crucial to assessing the health of insulation in high-voltage systems. Nevertheless, noise often distorts these signals, hindering the ability to obtain precise information.... 详细信息
来源: 评论
denoising autoencoder Based Delete and Generate Approach for Text Style Transfer  30th
Denoising AutoEncoder Based Delete and Generate Approach for...
收藏 引用
30th International Conference on Artificial Neural Networks (ICANN)
作者: Hu, Ting Yang, Haojin Meinel, Christoph Univ Potsdam Hasso Plattner Inst Potsdam Germany
Text style transfer task is transferring sentences to other styles while preserving the semantics as much as possible. In this work, we study a two-step text style transfer method on non-parallel datasets. In the firs... 详细信息
来源: 评论
A correlative denoising autoencoder to model social influence for top-N recommender system
收藏 引用
Frontiers of Computer Science 2020年 第3期14卷 31-43页
作者: Yiteng PAN Fazhi HE Haiping YU School of Computer Science Wuhan UniversityWuhan 430072China
In recent years,there are numerous works been proposed to leverage the techniques of deep learning to improve social-aware recommendation *** most cases,it requires a larger number of data to train a robust deep learn... 详细信息
来源: 评论
Noise reduction in the spectral domain of hyperspectral images using denoising autoencoder methods
收藏 引用
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS 2020年 203卷 104063-104063页
作者: Zhang, Chu Zhou, Lei Zhao, Yiying Zhu, Susu Liu, Fei He, Yong Zhejiang Univ Coll Biosyst Engn & Food Sci Hangzhou 310058 Peoples R China Minist Agr & Rural Affairs Key Lab Spect Sensing Hangzhou 310058 Peoples R China
denoising of spectra has been a great challenge in hyperspectral image analysis. Near-infrared hyperspectral images of milk powder, rice flour and soybean flour were acquired and denoising in the spectral domain were ... 详细信息
来源: 评论
Effective network intrusion detection via representation learning: A denoising autoencoder approach
收藏 引用
COMPUTER COMMUNICATIONS 2022年 194卷 55-65页
作者: Lopes, Ivandro O. Zou, Deqing Abdulqadder, Ihsan H. Ruambo, Francis A. Yuan, Bin Jin, Hai Huazhong Univ Sci & Technol Sch Comp Sci & Technol Wuhan 430074 Peoples R China Natl Engn Res Ctr Big Data Technol & Syst Wuhan Peoples R China Cluster & Grid Comp Lab Wuhan Peoples R China Serv Comp Technol & Syst Lab Wuhan Peoples R China Nucleo Operac Soc Informacao Praia Cape Verde Big Data Secur Engn Res Ctr Wuhan Peoples R China Huazhong Univ Sci & Technol Sch Cyber Sci & Engn Wuhan 430074 Peoples R China Cihan Univ Erbil Dept Informat & Software Engn Erbil Kurdistan Regio Iraq Shenzhen Huazhong Univ Sci & Technol Res Inst Shenzhen 518057 Peoples R China
The introduction of deep learning techniques in intrusion detection problems has enabled an enhanced standard of detection effectiveness. However, most of the progress has occurred in supervised learning, which requir... 详细信息
来源: 评论
Robust and Fast Temperature Extraction for Brillouin Optical Time-Domain Analyzer by Using denoising autoencoder-Based Deep Neural Networks
收藏 引用
IEEE SENSORS JOURNAL 2020年 第7期20卷 3614-3620页
作者: Wang, Biwei Guo, Nan Wang, Liang Yu, Changyuan Lu, Chao Hong Kong Polytech Univ Dept Elect & Informat Engn Hong Kong Peoples R China Huazhong Univ Sci & Technol Sch Opt & Elect Informat Natl Engn Lab Next Generat Internet Access Syst Wuhan 430074 Peoples R China
A method of robust and fast temperature extraction for Brillouin optical time-domain analyzer (BOTDA) sensing systems using the denoising autoencoder (DAE) based deep neural networks (DNN) is demonstrated. After appro... 详细信息
来源: 评论
Multiscale denoising autoencoder for improvement of target detection
收藏 引用
INTERNATIONAL JOURNAL OF REMOTE SENSING 2021年 第8期42卷 3002-3016页
作者: Sun, Qiaoqiao Liu, Xuefeng Bourennane, Salah Liu, Bin Aix Marseille Univ Inst Fresnel Cent Marseille CNRS 52 Ave Escadrille Normandie Niemen F-13013 Marseille France Qingdao Univ Sci & Technol Coll Automat & Elect Engn Qingdao Peoples R China
Target detection is one of the most important applications of hyperspectral technology. However, due to spectral variations caused by noise or environment, the within-class variation is enlarged which degrades the per... 详细信息
来源: 评论
Feature learning from incomplete EEG with denoising autoencoder
收藏 引用
NEUROCOMPUTING 2015年 165卷 23-31页
作者: Li, Junhua Struzik, Zbigniew Zhang, Liqing Cichocki, Andrzej RIKEN Brain Sci Inst Lab Adv Brain Signal Proc Wako Saitama 3510198 Japan Shanghai Jiao Tong Univ Dept Comp Sci & Engn Key Lab Shanghai Educ Commiss Intelligent Interac Shanghai 200240 Peoples R China Polish Acad Sci Syst Res Inst PL-00901 Warsaw Poland
An alternative pathway for the human brain to communicate with the outside world is by means of a brain computer interface (BCI). A BCI can decode electroencephalogram (EEG) signals of brain activities, and then send ... 详细信息
来源: 评论
Within-project and cross-project just-in-time defect prediction based on denoising autoencoder and convolutional neural network
收藏 引用
IET SOFTWARE 2020年 第3期14卷 185-202页
作者: Zhu, Kun Zhang, Nana Ying, Shi Zhu, Dandan Wuhan Univ Sch Comp Sci 299 Bayi Rd Wuhan Peoples R China Shanghai Jiao Tong Univ Artificial Intelligence Inst 800 Dongchuan Rd Shanghai Peoples R China
Just-in-time defect prediction is an important and useful branch in software defect prediction. At present, deep learning is a research hotspot in the field of artificial intelligence, which can combine basic defect f... 详细信息
来源: 评论
Elimination of Random Mixed Noise in ECG Using Convolutional denoising autoencoder With Transformer Encoder
收藏 引用
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 2024年 第4期28卷 1993-2004页
作者: Chen, Meng Li, Yongjian Zhang, Liting Liu, Lei Han, Baokun Shi, Wenzhuo Wei, Shoushui Shandong Univ Sch Control Sci & Engn Jinan 250061 Peoples R China Shandong Univ Shandong Prov Hosp Dept Cardiol Jinan 250061 Peoples R China Shandong Univ Inst Marine Sci & Technol Qingdao 266237 Peoples R China
Electrocardiogram (ECG) signals frequently encounter diverse types of noise, such as baseline wander (BW), electrode motion (EM) artifacts, muscle artifact (MA), and others. These noises often occur in combination dur... 详细信息
来源: 评论