咨询与建议

限定检索结果

文献类型

  • 208 篇 期刊文献
  • 131 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 341 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 314 篇 工学
    • 176 篇 计算机科学与技术...
    • 124 篇 电气工程
    • 51 篇 信息与通信工程
    • 43 篇 控制科学与工程
    • 27 篇 软件工程
    • 25 篇 仪器科学与技术
    • 21 篇 电子科学与技术(可...
    • 18 篇 石油与天然气工程
    • 10 篇 机械工程
    • 10 篇 动力工程及工程热...
    • 9 篇 材料科学与工程(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 建筑学
    • 4 篇 化学工程与技术
    • 4 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 环境科学与工程(可...
    • 3 篇 网络空间安全
  • 70 篇 理学
    • 33 篇 物理学
    • 25 篇 生物学
    • 9 篇 化学
    • 6 篇 数学
    • 6 篇 地球物理学
  • 43 篇 医学
    • 25 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 6 篇 特种医学
    • 3 篇 药学(可授医学、理...
  • 22 篇 管理学
    • 18 篇 管理科学与工程(可...
  • 4 篇 农学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 341 篇 denoising autoen...
  • 65 篇 deep learning
  • 21 篇 convolutional ne...
  • 16 篇 noise reduction
  • 13 篇 neural network
  • 12 篇 machine learning
  • 11 篇 speech recogniti...
  • 10 篇 autoencoder
  • 8 篇 deep neural netw...
  • 8 篇 robust speech re...
  • 7 篇 feature enhancem...
  • 7 篇 transfer learnin...
  • 7 篇 anomaly detectio...
  • 7 篇 missing data
  • 7 篇 neural networks
  • 7 篇 classification
  • 7 篇 unsupervised lea...
  • 6 篇 collaborative fi...
  • 6 篇 fault diagnosis
  • 6 篇 remaining useful...

机构

  • 3 篇 nagaoka univ tec...
  • 3 篇 wuhan univ sch c...
  • 3 篇 acad sinica res ...
  • 2 篇 tsinghua univ de...
  • 2 篇 nanyang technol ...
  • 2 篇 natl taiwan univ...
  • 2 篇 univ calif irvin...
  • 2 篇 univ chinese aca...
  • 2 篇 donald bren scho...
  • 2 篇 nanyang technol ...
  • 2 篇 taiyuan univ tec...
  • 2 篇 harbin inst tech...
  • 2 篇 beijing univ pos...
  • 2 篇 univ sains malay...
  • 2 篇 nanjing univ sci...
  • 2 篇 tsinghua univ de...
  • 2 篇 tech univ libere...
  • 2 篇 natl inst techno...
  • 2 篇 univ calif irvin...
  • 2 篇 city univ hong k...

作者

  • 5 篇 wang longbiao
  • 5 篇 kai atsuhiko
  • 4 篇 tsao yu
  • 4 篇 ueda yuma
  • 3 篇 he fazhi
  • 3 篇 pan yiteng
  • 3 篇 schanze thomas
  • 3 篇 malek jiri
  • 3 篇 li jian
  • 3 篇 samann fars
  • 3 篇 liu bin
  • 2 篇 zhang tao
  • 2 篇 petr cerva
  • 2 篇 kang moses
  • 2 篇 baek jongbok
  • 2 篇 wang huawei
  • 2 篇 wang yuhao
  • 2 篇 padil khairul ha...
  • 2 篇 liu yang
  • 2 篇 teeparthi kiran

语言

  • 329 篇 英文
  • 11 篇 其他
  • 1 篇 中文
检索条件"主题词=denoising autoencoder"
341 条 记 录,以下是221-230 订阅
排序:
SNR-Aware Convolutional Neural Network Modeling for Speech Enhancement  17
SNR-Aware Convolutional Neural Network Modeling for Speech E...
收藏 引用
17th Annual Conference of the International-Speech-Communication-Association (INTERSPEECH 2016)
作者: Fu, Szu-Wei Tsao, Yu Lu, Xugang Acad Sinica Res Ctr Informat Technol Innovat Taipei Taiwan Natl Taiwan Univ Dept Comp Sci & Informat Engn Taipei Taiwan Natl Inst Informat & Commun Technol Kyoto Japan
This paper proposes a signal-to-noise-ratio (SNR) aware convolutional neural network (CNN) model for speech enhancement (SE). Because the CNN model can deal with local temporal-spectral structures of speech signals, i... 详细信息
来源: 评论
Front-end Feature Compensation and denoising for Noise Robust Speech Emotion Recognition  20
Front-end Feature Compensation and Denoising for Noise Robus...
收藏 引用
Interspeech Conference
作者: Chakraborty, Rupayan Panda, Ashish Pandharipande, Meghna Joshi, Sonal Kopparapu, Sunil Kumar TCS Res & Innovat Mumbai Maharashtra India
Front-end processing is one of the ways to impart noise robustness to speech emotion recognition systems in mismatched scenarios. Here, we implement and compare different front-end robustness techniques for their effi... 详细信息
来源: 评论
An Effective Deep Learning Based Scheme for Network Intrusion Detection  24
An Effective Deep Learning Based Scheme for Network Intrusio...
收藏 引用
24th International Conference on Pattern Recognition (ICPR)
作者: Zhang, Hongpo Wu, Chase Q. Gao, Shan Wang, Zongmin Xu, Yuxiao Liu, Yongpeng State Key Lab Math Engn & Adv Comp Zhengzhou Henan Peoples R China Zhengzhou Univ Cooperat Innovat Ctr Internet Healthcare Zhengzhou Henan Peoples R China New Jersey Inst Technol Dept Comp Sci Newark NJ 07102 USA Hangzhou DPtech Technol Co Ltd Dept Res & Dev Hangzhou Zhejiang Peoples R China
Intrusion detection systems (IDS) play an important role in the protection of network operations and services. In this paper, we propose an effective network intrusion detection scheme based on deep learning technique... 详细信息
来源: 评论
Fine-Tuning Self-Supervised Multilingual Sequence-To-Sequence Models for Extremely Low-Resource NMT  7
Fine-Tuning Self-Supervised Multilingual Sequence-To-Sequenc...
收藏 引用
Moratuwa Engineering Research Conference (MERCon) / 7th International Multidisciplinary Engineering Research Conference
作者: Thillainathan, Sarubi Ranathunga, Surangika Jayasena, Sanath Univ Moratuwa Dept Comp Sci & Engn Katubedda Sri Lanka
Neural Machine Translation (NMT) tends to perform poorly in low-resource language settings due to the scarcity of parallel data. Instead of relying on inadequate parallel corpora, we can take advantage of monolingual ... 详细信息
来源: 评论
3D Reconstruction from 2D Cerebral Angiograms as a Volumetric denoising Problem  18th
3D Reconstruction from 2D Cerebral Angiograms as a Volumetri...
收藏 引用
18th International Symposium on Visual Computing (ISVC)
作者: Wu, Sean Kaneko, Naoki Mendoza, Steve Liebeskind, David S. Scalzo, Fabien Pepperdine Univ Keck Data Sci Inst Malibu CA 90265 USA UCLA Dept Intervent Neuroradiol Los Angeles CA 90095 USA UCLA Dept Neurol Los Angeles CA 90095 USA
Accurately capturing the 3D geometry of the brain's blood vessels is critical in helping neuro-interventionalists to identify and treat neurovascular disorders, such as stroke and aneurysms. Currently, the gold st... 详细信息
来源: 评论
DCA-CLA: A scRNA-seq Classification Framework based on Deep Count autoencoder
DCA-CLA: A scRNA-seq Classification Framework based on Deep ...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Wu, Yulun Guo, Yanming Li, Jian Lao, Songyang Guo, Jinlin Wang, Haoran Natl Univ Def Technol Coll Syst Engn Changsha Peoples R China
Identifying cell types is crucial for single-cell RNA sequencing (scRNA-seq) analysis and can be potentially utilized to understand high-level biological processes. Supervised models based on neural networks have rece... 详细信息
来源: 评论
Author Identification using Deep Learning  15
Author Identification using Deep Learning
收藏 引用
15th IEEE International Conference on Machine Learning and Applications (ICMLA)
作者: Mohsen, Ahmed M. El-Makky, Nagwa M. Ghanem, Nagia Alexandria Univ Fac Engn Alexandria Egypt
Authorship identification is the task of identifying the author of a given text from a set of suspects. The main concern of this task is to define an appropriate characterization of texts that captures the writing sty... 详细信息
来源: 评论
Reading Imagined Letter Shapes from the Mind's Eye Using Real-time 7 Tesla fMRI  10
Reading Imagined Letter Shapes from the Mind's Eye Using Rea...
收藏 引用
10th International Winter Conference on Brain-Computer Interface (BCI)
作者: Goebel, Rainer van Hoof, Rick Bhat, Salil Luhrs, Michael Senden, Mario Maastricht Univ Dept Cognit Neurosci Maastricht Netherlands
We present a 7 Tesla fMRI proof-of-concept study of the first letter speller BCI that decodes imagined letter shapes from activity patterns in early visual cortical areas. New tools are developed to enable real-time p... 详细信息
来源: 评论
Predicting Unmeasured Region of the Efficiency Map of a Speed Reducer Using a denoising Auto-encoder  3
Predicting Unmeasured Region of the Efficiency Map of a Spee...
收藏 引用
3rd International Conference on Computational Intelligence and Applications (ICCIA)
作者: Shin, Crino Jin, Yongsik Jeong, Seunghyun Yun, Jongpil Korea Inst Ind Technol KITECH Cheonan South Korea Kyungpook Natl Univ Daegu South Korea Kyungpook Natl Univ Dept Elect Engn Daegu South Korea
This paper presents a Remaining Useful Life (RUL) prediction method for a speed reducer based on denoising auto-encoder (DAE). Constructing the efficiency map of the reducer is an important process for predicting the ... 详细信息
来源: 评论
Reducing Speckle Noise from Ultrasound Images Using an autoencoder Network  28
Reducing Speckle Noise from Ultrasound Images Using an Autoe...
收藏 引用
28th Signal Processing and Communications Applications Conference (SIU)
作者: Karaoglu, Onur Bilge, Hasan Sakir Uluer, Ihsan Karabuk Univ Elekt Elekt Muhendisligi Karabuk Turkey Gazi Univ Elekt Elekt Muhendisligi Ankara Turkey
Image enhancement aims to obtain a clear image from a noisy image and it also uses for ultrasound images. In the experimental study, unlike classical image enhancement methods, deep learning method was used. Different... 详细信息
来源: 评论