咨询与建议

限定检索结果

文献类型

  • 207 篇 期刊文献
  • 131 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 340 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 315 篇 工学
    • 176 篇 计算机科学与技术...
    • 123 篇 电气工程
    • 50 篇 信息与通信工程
    • 43 篇 控制科学与工程
    • 28 篇 软件工程
    • 25 篇 仪器科学与技术
    • 21 篇 电子科学与技术(可...
    • 18 篇 石油与天然气工程
    • 11 篇 动力工程及工程热...
    • 10 篇 机械工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 建筑学
    • 4 篇 化学工程与技术
    • 4 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 船舶与海洋工程
    • 3 篇 环境科学与工程(可...
  • 69 篇 理学
    • 32 篇 物理学
    • 25 篇 生物学
    • 9 篇 化学
    • 6 篇 数学
    • 6 篇 地球物理学
  • 44 篇 医学
    • 25 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 6 篇 特种医学
  • 23 篇 管理学
    • 19 篇 管理科学与工程(可...
  • 5 篇 农学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 340 篇 denoising autoen...
  • 64 篇 deep learning
  • 21 篇 convolutional ne...
  • 16 篇 noise reduction
  • 13 篇 neural network
  • 12 篇 machine learning
  • 11 篇 speech recogniti...
  • 10 篇 autoencoder
  • 8 篇 deep neural netw...
  • 8 篇 robust speech re...
  • 7 篇 feature enhancem...
  • 7 篇 transfer learnin...
  • 7 篇 anomaly detectio...
  • 7 篇 missing data
  • 7 篇 neural networks
  • 7 篇 classification
  • 7 篇 unsupervised lea...
  • 6 篇 collaborative fi...
  • 6 篇 fault diagnosis
  • 6 篇 remaining useful...

机构

  • 3 篇 nagaoka univ tec...
  • 3 篇 wuhan univ sch c...
  • 3 篇 acad sinica res ...
  • 2 篇 tsinghua univ de...
  • 2 篇 nanyang technol ...
  • 2 篇 natl taiwan univ...
  • 2 篇 univ calif irvin...
  • 2 篇 univ chinese aca...
  • 2 篇 donald bren scho...
  • 2 篇 nanyang technol ...
  • 2 篇 taiyuan univ tec...
  • 2 篇 harbin inst tech...
  • 2 篇 beijing univ pos...
  • 2 篇 univ sains malay...
  • 2 篇 nanjing univ sci...
  • 2 篇 tsinghua univ de...
  • 2 篇 tech univ libere...
  • 2 篇 natl inst techno...
  • 2 篇 univ calif irvin...
  • 2 篇 city univ hong k...

作者

  • 5 篇 wang longbiao
  • 5 篇 kai atsuhiko
  • 4 篇 tsao yu
  • 4 篇 ueda yuma
  • 3 篇 he fazhi
  • 3 篇 pan yiteng
  • 3 篇 schanze thomas
  • 3 篇 malek jiri
  • 3 篇 li jian
  • 3 篇 samann fars
  • 3 篇 liu bin
  • 2 篇 zhang tao
  • 2 篇 petr cerva
  • 2 篇 kang moses
  • 2 篇 baek jongbok
  • 2 篇 wang huawei
  • 2 篇 wang yuhao
  • 2 篇 padil khairul ha...
  • 2 篇 liu yang
  • 2 篇 teeparthi kiran

语言

  • 328 篇 英文
  • 11 篇 其他
  • 1 篇 中文
检索条件"主题词=denoising autoencoder"
340 条 记 录,以下是251-260 订阅
排序:
SPEECH FEATURE denoising AND DEREVERBERATION VIA DEEP autoencoderS FOR NOISY REVERBERANT SPEECH RECOGNITION
SPEECH FEATURE DENOISING AND DEREVERBERATION VIA DEEP AUTOEN...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Feng, Xue Zhang, Yaodong Glass, James MIT Comp Sci & Artificial Intelligence Lab Cambridge MA 02139 USA
denoising autoencoders (DAs) have shown success in generating robust features for images, but there has been limited work in applying DAs for speech. In this paper we present a deep denoising autoencoder (DDA) framewo... 详细信息
来源: 评论
Robust Multivariate Anomaly-Based Intrusion Detection System for Cyber-Physical Systems  1
收藏 引用
5th International Symposium on Cyber Security Cryptography and Machine Learning (CSCML)
作者: Dutta, Aneet Kumar Negi, Rohit Shukla, Sandeep Kumar Indian Inst Technol Kanpur Dept Comp Sci & Engn C3i Ctr Kanpur Uttar Pradesh India
Cyber-physical critical infrastructures such as power plants are no longer air-gapped. Due to IP-Convergence, the control systems and sensor/actuator communication networks are often directly or indirectly connected t... 详细信息
来源: 评论
Unsupervised Detection of Anomalous Behavior in Wireless Devices based on Auto-Encoders
Unsupervised Detection of Anomalous Behavior in Wireless Dev...
收藏 引用
IEEE/IFIP Network Operations and Management Symposium (NOMS)
作者: Albasir, A. Hu, Q. Al-tekreeti, M. Naik, K. Naik, N. Kozlowski, A. J. Goel, N. Univ Waterloo Waterloo ON Canada Minist Def Def Sch CIS London England Cistech Ltd Ottawa ON Canada
A major problem of wireless devices is the detection of security threats in an efficient manner. Several recent incidents show that malicious applications (apps) can find their ways to online markets (e.g., Google Pla... 详细信息
来源: 评论
Convolution by Evolution Differentiable Pattern Producing Networks  16
Convolution by Evolution Differentiable Pattern Producing Ne...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Fernando, Chrisantha Banarse, Dylan Reynolds, Malcolm Besse, Frederic Pfau, David Jaderberg, Max Lanctot, Marc Wierstra, Daan Google DeepMind London England
In this work we introduce a differentiable version of the Compositional Pattern Producing Network, called the DPPN. Unlike a standard CPPN, the topology of a DPPN is evolved but the weights are learned. A Lamarckian a... 详细信息
来源: 评论
Loop Closure Detection for Visual SLAM Systems Using Deep Neural Networks  34
Loop Closure Detection for Visual SLAM Systems Using Deep Ne...
收藏 引用
34th Chinese Control Conference (CCC)
作者: Gao, Xiang Zhang, Tao Tsinghua Univ Dept Automat Beijing 100084 Peoples R China
The detection of loop closure is of essential importance in visual simultaneous localization and mapping systems. It can reduce the accumulating drift of localization algorithms if the loops are checked correctly. Tra... 详细信息
来源: 评论
ROBUST BELIEF STATE SPACE REPRESENTATION FOR STATISTICAL DIALOGUE MANAGERS USING DEEP autoencoderS
ROBUST BELIEF STATE SPACE REPRESENTATION FOR STATISTICAL DIA...
收藏 引用
IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)
作者: Lygerakis, Fotios Diakoloulas, Vassilios Lagoudakis, Michail Kotti, Margarita Tech Univ Crete Sch Elect & Comp Engn Iraklion Greece Toshiba Res Cambridge Speech Technol Grp Cambridge England
Statistical Dialogue Systems (SDS) have proved their humongous potential over the past few years. However, the lack of efficient and robust representations of the belief state (BS) space refrains them from revealing t... 详细信息
来源: 评论
Front-end Feature Compensation and denoising for Noise Robust Speech Emotion Recognition  20
Front-end Feature Compensation and Denoising for Noise Robus...
收藏 引用
Interspeech Conference
作者: Chakraborty, Rupayan Panda, Ashish Pandharipande, Meghna Joshi, Sonal Kopparapu, Sunil Kumar TCS Res & Innovat Mumbai Maharashtra India
Front-end processing is one of the ways to impart noise robustness to speech emotion recognition systems in mismatched scenarios. Here, we implement and compare different front-end robustness techniques for their effi... 详细信息
来源: 评论
Recovery method for missing sensor data in multi-sensor based walking recognition system  8
Recovery method for missing sensor data in multi-sensor base...
收藏 引用
8th IEEE Annual International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (IEEE-CYBER)
作者: Xie, Cheche Bi, Sheng Dong, Min Li, Yongfa South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Guangdong Peoples R China
Missing data is a major challenge in activity recognition and becomes an increasingly important study. Most current research on activity recognition is based on multiple sensors, which may bring the problem of missing... 详细信息
来源: 评论
DCA-CLA: A scRNA-seq Classification Framework based on Deep Count autoencoder
DCA-CLA: A scRNA-seq Classification Framework based on Deep ...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Wu, Yulun Guo, Yanming Li, Jian Lao, Songyang Guo, Jinlin Wang, Haoran Natl Univ Def Technol Coll Syst Engn Changsha Peoples R China
Identifying cell types is crucial for single-cell RNA sequencing (scRNA-seq) analysis and can be potentially utilized to understand high-level biological processes. Supervised models based on neural networks have rece... 详细信息
来源: 评论
Predicting Unmeasured Region of the Efficiency Map of a Speed Reducer Using a denoising Auto-encoder  3
Predicting Unmeasured Region of the Efficiency Map of a Spee...
收藏 引用
3rd International Conference on Computational Intelligence and Applications (ICCIA)
作者: Shin, Crino Jin, Yongsik Jeong, Seunghyun Yun, Jongpil Korea Inst Ind Technol KITECH Cheonan South Korea Kyungpook Natl Univ Daegu South Korea Kyungpook Natl Univ Dept Elect Engn Daegu South Korea
This paper presents a Remaining Useful Life (RUL) prediction method for a speed reducer based on denoising auto-encoder (DAE). Constructing the efficiency map of the reducer is an important process for predicting the ... 详细信息
来源: 评论