咨询与建议

限定检索结果

文献类型

  • 207 篇 期刊文献
  • 131 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 340 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 315 篇 工学
    • 176 篇 计算机科学与技术...
    • 123 篇 电气工程
    • 50 篇 信息与通信工程
    • 43 篇 控制科学与工程
    • 28 篇 软件工程
    • 25 篇 仪器科学与技术
    • 21 篇 电子科学与技术(可...
    • 18 篇 石油与天然气工程
    • 11 篇 动力工程及工程热...
    • 10 篇 机械工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 建筑学
    • 4 篇 化学工程与技术
    • 4 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 船舶与海洋工程
    • 3 篇 环境科学与工程(可...
  • 69 篇 理学
    • 32 篇 物理学
    • 25 篇 生物学
    • 9 篇 化学
    • 6 篇 数学
    • 6 篇 地球物理学
  • 44 篇 医学
    • 25 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 6 篇 特种医学
  • 23 篇 管理学
    • 19 篇 管理科学与工程(可...
  • 5 篇 农学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 340 篇 denoising autoen...
  • 64 篇 deep learning
  • 21 篇 convolutional ne...
  • 16 篇 noise reduction
  • 13 篇 neural network
  • 12 篇 machine learning
  • 11 篇 speech recogniti...
  • 10 篇 autoencoder
  • 8 篇 deep neural netw...
  • 8 篇 robust speech re...
  • 7 篇 feature enhancem...
  • 7 篇 transfer learnin...
  • 7 篇 anomaly detectio...
  • 7 篇 missing data
  • 7 篇 neural networks
  • 7 篇 classification
  • 7 篇 unsupervised lea...
  • 6 篇 collaborative fi...
  • 6 篇 fault diagnosis
  • 6 篇 remaining useful...

机构

  • 3 篇 nagaoka univ tec...
  • 3 篇 wuhan univ sch c...
  • 3 篇 acad sinica res ...
  • 2 篇 tsinghua univ de...
  • 2 篇 nanyang technol ...
  • 2 篇 natl taiwan univ...
  • 2 篇 univ calif irvin...
  • 2 篇 univ chinese aca...
  • 2 篇 donald bren scho...
  • 2 篇 nanyang technol ...
  • 2 篇 taiyuan univ tec...
  • 2 篇 harbin inst tech...
  • 2 篇 beijing univ pos...
  • 2 篇 univ sains malay...
  • 2 篇 nanjing univ sci...
  • 2 篇 tsinghua univ de...
  • 2 篇 tech univ libere...
  • 2 篇 natl inst techno...
  • 2 篇 univ calif irvin...
  • 2 篇 city univ hong k...

作者

  • 5 篇 wang longbiao
  • 5 篇 kai atsuhiko
  • 4 篇 tsao yu
  • 4 篇 ueda yuma
  • 3 篇 he fazhi
  • 3 篇 pan yiteng
  • 3 篇 schanze thomas
  • 3 篇 malek jiri
  • 3 篇 li jian
  • 3 篇 samann fars
  • 3 篇 liu bin
  • 2 篇 zhang tao
  • 2 篇 petr cerva
  • 2 篇 kang moses
  • 2 篇 baek jongbok
  • 2 篇 wang huawei
  • 2 篇 wang yuhao
  • 2 篇 padil khairul ha...
  • 2 篇 liu yang
  • 2 篇 teeparthi kiran

语言

  • 328 篇 英文
  • 11 篇 其他
  • 1 篇 中文
检索条件"主题词=denoising autoencoder"
340 条 记 录,以下是261-270 订阅
排序:
Tactile Object Recognition using Deep Learning and Dropout  14
Tactile Object Recognition using Deep Learning and Dropout
收藏 引用
14th IEEE-RAS International Conference on Humanoid Robots (Humanoids)
作者: Schmitz, Alexander Bansho, Yusuke Noda, Kuniaki Iwata, Hiroyasu Ogata, Tetsuya Sugano, Shigeki Waseda Univ Sch Creat Sci & Engn Sugano Lab Shinjuku Ku Okubo 2-4-12 Tokyo 1690072 Japan Waseda Univ Sch Creat Sci & Engn Sugano Lab Shinjuku Ku Tokyo 1620044 Japan Waseda Univ Grad Sch Fundamental Sci & Engn Tokyo 1698555 Japan Waseda Univ Sch Creat Sci & Engn Dept Modern Mech Engn Tokyo Japan Waseda Univ Sch Creat Sci & Engn Dept Modern Mech Engn Shinjuku Ku Tokyo 1698555 Japan
Recognizing grasped objects with tactile sensors is beneficial in many situations, as other sensor information like vision is not always reliable. In this paper, we aim for multimodal object recognition by power grasp... 详细信息
来源: 评论
Compensate multiple distortions for speaker recognition systems  29
Compensate multiple distortions for speaker recognition syst...
收藏 引用
29th European Signal Processing Conference (EUSIPCO)
作者: Mohammadamini, Mohammad Matrouf, Driss Bonastre, Jean-Francois Serizel, Romain Dowerah, Sandipana Jouvet, Denis Avignon Univ LTA Lab Informat Avignon Avignon France Univ Lorraine CNRS INRIA Loria F-54000 Nancy France
The performance of speaker recognition systems reduces dramatically in severe conditions in the presence of additive noise and/or reverberation. In some cases, there is only one kind of domain mismatch like additive n... 详细信息
来源: 评论
MULTI-TASK autoencoder FOR NOISE-ROBUST SPEECH RECOGNITION
MULTI-TASK AUTOENCODER FOR NOISE-ROBUST SPEECH RECOGNITION
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Zhang, Haoyi Liu, Conggui Inoue, Nakamasa Shinoda, Koichi Tokyo Inst Technol Tokyo Japan
For speech recognition in noisy environments, we propose a multi-task autoencoder which estimates not only clean speech features but also noise features from noisy speech. We introduce the deSpeeching autoencoder, whi... 详细信息
来源: 评论
Mapping Between Ultrasound and Vowel Speech Using DNN Framework  9
Mapping Between Ultrasound and Vowel Speech Using DNN Framew...
收藏 引用
9th International Symposium on Chinese Spoken Language Processing (ISCSLP)
作者: Zheng, Xinyuan Wei, Jianguo Lu, Wenhuan Fang, Qiang Dang, Jianwu Tianjin Univ Sch Comp Sci & Technol Tianjin Peoples R China Tianjin Univ Sch Comp Software Tianjin Peoples R China Chinese Acad Sci Beijing 100864 Peoples R China JAIST Sch Informat Tokyo Japan
Building up the mapping between articulatory movements and corresponding speech could great facility the speech training and speech aid for voiceless patients. In this paper, we propose a deep learning framework for b... 详细信息
来源: 评论
Align-Denoise: Single-Pass Non-Autoregressive Speech Recognition  22
Align-Denoise: Single-Pass Non-Autoregressive Speech Recogni...
收藏 引用
Interspeech Conference
作者: Chen, Nanxin Zelasko, Piotr Moro-Velazquez, Laureano Villalba, Jesus Dehak, Najim Johns Hopkins Univ Ctr Language & Speech Proc Baltimore MD 21218 USA Johns Hopkins Univ Human Language Technol Ctr Excellence Baltimore MD 21218 USA
Deep autoregressive models start to become comparable or superior to the conventional systems for automatic speech recognition. However, for the inference computation, they still suffer from inference speed issue due ... 详细信息
来源: 评论
Reading Imagined Letter Shapes from the Mind's Eye Using Real-time 7 Tesla fMRI  10
Reading Imagined Letter Shapes from the Mind's Eye Using Rea...
收藏 引用
10th International Winter Conference on Brain-Computer Interface (BCI)
作者: Goebel, Rainer van Hoof, Rick Bhat, Salil Luhrs, Michael Senden, Mario Maastricht Univ Dept Cognit Neurosci Maastricht Netherlands
We present a 7 Tesla fMRI proof-of-concept study of the first letter speller BCI that decodes imagined letter shapes from activity patterns in early visual cortical areas. New tools are developed to enable real-time p... 详细信息
来源: 评论
Research on Anomaly Detection of Offshore Buoy Water Temperature Data Based on LSTM-DAE Model  5
Research on Anomaly Detection of Offshore Buoy Water Tempera...
收藏 引用
5th International Conference on Robotics, Intelligent Control and Artificial Intelligence, RICAI 2023
作者: Gao, Saiyu Song, Miaomiao Hu, Wei Li, Wenqing Zheng, Shanshan Zhuo, Lei Liu, Ru Huang, Jiuzhang Song, Haihui Cheng, Kaiyu Institute of Oceanographic Instrumentation Qilu University of Technology Shandong Academy of Sciences Qingdao266001 China National Marine Monitoring Equipment Engineering Technology Research Center China
At present, there are many quality problems in the hydrological data of ocean buoys, and it is urgent to carry out scientific and standardized data quality control to ensure the accuracy and rationality of the buoy da... 详细信息
来源: 评论
Modulation Signal denoising Based on Auto-encoder  16
Modulation Signal Denoising Based on Auto-encoder
收藏 引用
16th IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (IEEE BMSB)
作者: Mo, Zunyin Li, Hongli Wang, Jiao Huang, Hao Li, Jianqing Univ Elect Sci & Technol China Sch Phys Chengdu Peoples R China Univ Elect Sci & Technol China Sch Elect Sci & Engn Chengdu Peoples R China
This paper proposed a denoising method for modulated signals based on the autoencoder. The auto-encoder is a cascade structure, which is composed of multiple convolution layers and multiple pooling layers. It is mainl... 详细信息
来源: 评论
OPEN SET RECOGNITION BY REGULARISING CLASSIFIER WITH FAKE DATA GENERATED BY GENERATIVE ADVERSARIAL NETWORKS
OPEN SET RECOGNITION BY REGULARISING CLASSIFIER WITH FAKE DA...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Jo, Inhyuk Kim, Jungtaek Kang, Hyohyeong Kim, Yong-Deok Choi, Seungjin POSTECH Dept Comp Sci & Engn Pohang South Korea Samsung Elect Software R&D Ctr Device Solut Seoul South Korea
We present a new method to generate fake data in unknown classes in generative adversarial networks (GANs) framework. The generator in GANs is trained to generate somewhat similar to data in known classes but the diff... 详细信息
来源: 评论
Self-supervised Siamese autoencoders  22nd
Self-supervised Siamese Autoencoders
收藏 引用
22nd International Symposium on Intelligent Data Analysis (IDA)
作者: Baier, Friederike Mair, Sebastian Fadel, Samuel G. Leuphana Univ Luneburg Luneburg Germany Uppsala Univ Uppsala Sweden Linkoping Univ Linkoping Sweden
In contrast to fully-supervised models, self-supervised representation learning only needs a fraction of data to be labeled and often achieves the same or even higher downstream performance. The goal is to pre-train d... 详细信息
来源: 评论