咨询与建议

限定检索结果

文献类型

  • 207 篇 期刊文献
  • 131 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 340 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 315 篇 工学
    • 176 篇 计算机科学与技术...
    • 123 篇 电气工程
    • 50 篇 信息与通信工程
    • 43 篇 控制科学与工程
    • 28 篇 软件工程
    • 25 篇 仪器科学与技术
    • 21 篇 电子科学与技术(可...
    • 18 篇 石油与天然气工程
    • 11 篇 动力工程及工程热...
    • 10 篇 机械工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 建筑学
    • 4 篇 化学工程与技术
    • 4 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 船舶与海洋工程
    • 3 篇 环境科学与工程(可...
  • 69 篇 理学
    • 32 篇 物理学
    • 25 篇 生物学
    • 9 篇 化学
    • 6 篇 数学
    • 6 篇 地球物理学
  • 44 篇 医学
    • 25 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 6 篇 特种医学
  • 23 篇 管理学
    • 19 篇 管理科学与工程(可...
  • 5 篇 农学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 340 篇 denoising autoen...
  • 64 篇 deep learning
  • 21 篇 convolutional ne...
  • 16 篇 noise reduction
  • 13 篇 neural network
  • 12 篇 machine learning
  • 11 篇 speech recogniti...
  • 10 篇 autoencoder
  • 8 篇 deep neural netw...
  • 8 篇 robust speech re...
  • 7 篇 feature enhancem...
  • 7 篇 transfer learnin...
  • 7 篇 anomaly detectio...
  • 7 篇 missing data
  • 7 篇 neural networks
  • 7 篇 classification
  • 7 篇 unsupervised lea...
  • 6 篇 collaborative fi...
  • 6 篇 fault diagnosis
  • 6 篇 remaining useful...

机构

  • 3 篇 nagaoka univ tec...
  • 3 篇 wuhan univ sch c...
  • 3 篇 acad sinica res ...
  • 2 篇 tsinghua univ de...
  • 2 篇 nanyang technol ...
  • 2 篇 natl taiwan univ...
  • 2 篇 univ calif irvin...
  • 2 篇 univ chinese aca...
  • 2 篇 donald bren scho...
  • 2 篇 nanyang technol ...
  • 2 篇 taiyuan univ tec...
  • 2 篇 harbin inst tech...
  • 2 篇 beijing univ pos...
  • 2 篇 univ sains malay...
  • 2 篇 nanjing univ sci...
  • 2 篇 tsinghua univ de...
  • 2 篇 tech univ libere...
  • 2 篇 natl inst techno...
  • 2 篇 univ calif irvin...
  • 2 篇 city univ hong k...

作者

  • 5 篇 wang longbiao
  • 5 篇 kai atsuhiko
  • 4 篇 tsao yu
  • 4 篇 ueda yuma
  • 3 篇 he fazhi
  • 3 篇 pan yiteng
  • 3 篇 schanze thomas
  • 3 篇 malek jiri
  • 3 篇 li jian
  • 3 篇 samann fars
  • 3 篇 liu bin
  • 2 篇 zhang tao
  • 2 篇 petr cerva
  • 2 篇 kang moses
  • 2 篇 baek jongbok
  • 2 篇 wang huawei
  • 2 篇 wang yuhao
  • 2 篇 padil khairul ha...
  • 2 篇 liu yang
  • 2 篇 teeparthi kiran

语言

  • 328 篇 英文
  • 11 篇 其他
  • 1 篇 中文
检索条件"主题词=denoising autoencoder"
340 条 记 录,以下是271-280 订阅
排序:
EFFECTIVE JOINT TRAINING OF denoising FEATURE SPACE TRANSFORMS AND NEURAL NETWORK BASED ACOUSTIC MODELS
EFFECTIVE JOINT TRAINING OF DENOISING FEATURE SPACE TRANSFOR...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Fukuda, Takashi Ichikawa, Osamu Kurata, Gakuto Tachibana, Ryuki Thomas, Samuel Ramabhadran, Bhuvana IBM Watson Multimodal Chuo Ku Tokyo 1038510 Japan IBM Watson Multimodal Yorktown Hts NY 10598 USA
Neural Network (NN) based acoustic frontends, such as denoising autoencoders, are actively being investigated to improve the robustness of NN based acoustic models to various noise conditions. In recent work the joint... 详细信息
来源: 评论
Fine-Tuning Self-Supervised Multilingual Sequence-To-Sequence Models for Extremely Low-Resource NMT  7
Fine-Tuning Self-Supervised Multilingual Sequence-To-Sequenc...
收藏 引用
Moratuwa Engineering Research Conference (MERCon) / 7th International Multidisciplinary Engineering Research Conference
作者: Thillainathan, Sarubi Ranathunga, Surangika Jayasena, Sanath Univ Moratuwa Dept Comp Sci & Engn Katubedda Sri Lanka
Neural Machine Translation (NMT) tends to perform poorly in low-resource language settings due to the scarcity of parallel data. Instead of relying on inadequate parallel corpora, we can take advantage of monolingual ... 详细信息
来源: 评论
Online Anomaly Detection with Streaming Data based on Fine-grained Feature Forecasting  33
Online Anomaly Detection with Streaming Data based on Fine-g...
收藏 引用
33rd Chinese Control and Decision Conference (CCDC)
作者: Liu, Keying Mao, Wentao Shi, Huadong Wu, Chao Chen, Jiaxian Henan Normal Univ Sch Comp & Informat Engn Xinxiang 453007 Henan Peoples R China Engn Lab Intelligence Business & Internet Things Xinxiang 453007 Henan Peoples R China
In the industrial applications like fault diagnosis and health management, monitoring data generally reaches sequentially in a streaming form. To recognize fault occurrence in real time without system halt, it is nece... 详细信息
来源: 评论
Understanding Chromatin Remodeling Through Physics-Based Machine Learning Approaches
Understanding Chromatin Remodeling Through Physics-Based Mac...
收藏 引用
作者: Alvarado, Walter The University of Chicago
学位级别:Ph.D., Doctor of Philosophy
The packing of nucleosomes regulates gene expression through genome condensation and expansion, but the specific structures and their thermodynamic stabilities remain unresolved. In this work, we employ the use of a m... 详细信息
来源: 评论
DAE-Transformer-based Remaining Useful Life Prediction for Lithium-Ion Batteries in Energy Storages  3
DAE-Transformer-based Remaining Useful Life Prediction for L...
收藏 引用
3rd International Conference on New Energy and Power Engineering, ICNEPE 2023
作者: Huang, Bowen Zeng, Zihao Zhou, Yamin Liu, Jiang Zheng, Qian Wang, Luting Feng, Zihao Sun, Shukai Pan, Zheng Energy Saving Management Branch of State Grid Hunan Electric Power Co. Ltd Changsha China Hunan University College of Electrical and Information Engineering Changsha China
To improve the operation stability and reliability of energy storage stations (ESSs), it's significance to ensure high-precision battery remaining useful life (RUL) prediction. Recently, the raw capacity of batter... 详细信息
来源: 评论
MIDC-Net: Medical Image denoising and Disease Classification Network for Chest X-rays  3
MIDC-Net: Medical Image Denoising and Disease Classification...
收藏 引用
3rd International Conference on Electronic Information Engineering and Computer Science, EIECS 2023
作者: Li, Jiatu University of California San Diego Halicioǧlu Data Science Institute Department of Mathematics San DiegoCA United States
Accurate medical imaging is vital for precise disease diagnosis and effective treatment. However, X-ray images may be subject to varying degrees of noise due to factors such as patient health conditions requiring redu... 详细信息
来源: 评论
autoencoder: Issues, Challenges and Future Prospect  3rd
Autoencoder: Issues, Challenges and Future Prospect
收藏 引用
3rd International Conference on Recent Innovations and Technological Development in Mechanical Engineering, ICRITDME 2020
作者: Maheshwari, Anega Mitra, Priyanka Sharma, Bhavna Department of Computer Science Jaipur Engineering College and Research Centre Rajasthan Jaipur India
As of more recently, deep learning-based models have demonstrated considerable potential, as they have outperformed all traditional practices. When data becomes high dimensional, extraction of features and compression... 详细信息
来源: 评论
LPI radar signal recognition with U2-Net-based denoising  14
LPI radar signal recognition with U2-Net-based denoising
收藏 引用
14th International Conference on Information and Communication Technology Convergence, ICTC 2023
作者: Lee, Siho Nam, Haewoon Hanyang University Department of Electrical and Electronic Engineering Ansan Korea Republic of
Low Probability of Intercept (LPI) radar signals play a vital role in electronic warfare by maintaining informational superiority. Classifying these LPI radar waveforms is a key capability but remains a challenging ta... 详细信息
来源: 评论
NrGe-DTL: a computational framework for cancer drug response prediction based on deep transfer learning from combined denoised genomic profiles and chemical structure embedding of drugs
NrGe-DTL: a computational framework for cancer drug response...
收藏 引用
2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
作者: Zhang, Yuchen Lian, Linghang Yang, Xuhua Zhejiang University of Technology Coll. of Computer Science and Technology Hangzhou China
In recent years, precision medicine has been consistently studied and employed in cancer treatment. One of the main challenges in precision medicine is accurately predicting a cancer patient's response to a specif... 详细信息
来源: 评论
A Data-Driven Reliability Assessment Method for Composite Power Systems  3
A Data-Driven Reliability Assessment Method for Composite Po...
收藏 引用
3rd International Conference on Energy, Power and Electrical Engineering, EPEE 2023
作者: Liu, Zeyu Zhang, Bingchen Li, Qiang Zhao, Feng Liu, Di Hou, Kai Tianjin University Key Laboratory of Smart Grid of Ministry of Education Tianjin300072 China State Grid Information and Telecommunication Group Co. Ltd Beijing102211 China
A data driven approach for reliability assessment of composite power systems have been proposed in our paper. A Multi-Layer Extreme Learning Machine (MELM) is trained to graph the relations among system states versus ... 详细信息
来源: 评论