咨询与建议

限定检索结果

文献类型

  • 208 篇 期刊文献
  • 131 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 341 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 314 篇 工学
    • 176 篇 计算机科学与技术...
    • 124 篇 电气工程
    • 51 篇 信息与通信工程
    • 43 篇 控制科学与工程
    • 27 篇 软件工程
    • 25 篇 仪器科学与技术
    • 21 篇 电子科学与技术(可...
    • 18 篇 石油与天然气工程
    • 10 篇 机械工程
    • 10 篇 动力工程及工程热...
    • 9 篇 材料科学与工程(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 建筑学
    • 4 篇 化学工程与技术
    • 4 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 环境科学与工程(可...
    • 3 篇 网络空间安全
  • 70 篇 理学
    • 33 篇 物理学
    • 25 篇 生物学
    • 9 篇 化学
    • 6 篇 数学
    • 6 篇 地球物理学
  • 43 篇 医学
    • 25 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 6 篇 特种医学
    • 3 篇 药学(可授医学、理...
  • 22 篇 管理学
    • 18 篇 管理科学与工程(可...
  • 4 篇 农学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 341 篇 denoising autoen...
  • 65 篇 deep learning
  • 21 篇 convolutional ne...
  • 16 篇 noise reduction
  • 13 篇 neural network
  • 12 篇 machine learning
  • 11 篇 speech recogniti...
  • 10 篇 autoencoder
  • 8 篇 deep neural netw...
  • 8 篇 robust speech re...
  • 7 篇 feature enhancem...
  • 7 篇 transfer learnin...
  • 7 篇 anomaly detectio...
  • 7 篇 missing data
  • 7 篇 neural networks
  • 7 篇 classification
  • 7 篇 unsupervised lea...
  • 6 篇 collaborative fi...
  • 6 篇 fault diagnosis
  • 6 篇 remaining useful...

机构

  • 3 篇 nagaoka univ tec...
  • 3 篇 wuhan univ sch c...
  • 3 篇 acad sinica res ...
  • 2 篇 tsinghua univ de...
  • 2 篇 nanyang technol ...
  • 2 篇 natl taiwan univ...
  • 2 篇 univ calif irvin...
  • 2 篇 univ chinese aca...
  • 2 篇 donald bren scho...
  • 2 篇 nanyang technol ...
  • 2 篇 taiyuan univ tec...
  • 2 篇 harbin inst tech...
  • 2 篇 beijing univ pos...
  • 2 篇 univ sains malay...
  • 2 篇 nanjing univ sci...
  • 2 篇 tsinghua univ de...
  • 2 篇 tech univ libere...
  • 2 篇 natl inst techno...
  • 2 篇 univ calif irvin...
  • 2 篇 city univ hong k...

作者

  • 5 篇 wang longbiao
  • 5 篇 kai atsuhiko
  • 4 篇 tsao yu
  • 4 篇 ueda yuma
  • 3 篇 he fazhi
  • 3 篇 pan yiteng
  • 3 篇 schanze thomas
  • 3 篇 malek jiri
  • 3 篇 li jian
  • 3 篇 samann fars
  • 3 篇 liu bin
  • 2 篇 zhang tao
  • 2 篇 petr cerva
  • 2 篇 kang moses
  • 2 篇 baek jongbok
  • 2 篇 wang huawei
  • 2 篇 wang yuhao
  • 2 篇 padil khairul ha...
  • 2 篇 liu yang
  • 2 篇 teeparthi kiran

语言

  • 329 篇 英文
  • 11 篇 其他
  • 1 篇 中文
检索条件"主题词=denoising autoencoder"
341 条 记 录,以下是21-30 订阅
排序:
3-D BLE Indoor Localization Based on denoising autoencoder
收藏 引用
IEEE ACCESS 2017年 5卷 12751-12760页
作者: Xiao, Chao Yang, Daiqin Chen, Zhenzhong Tan, Guang Wuhan Univ Sch Remote Sensing & Informat Engn Wuhan 430079 Hubei Peoples R China Chinese Acad Sci SIAT Shenzhen 518005 Peoples R China
Bluetooth low energy (BLE)-based indoor localization has attracted increasing interests for its low-cost, low-power consumption, and ubiquitous availability in mobile devices. In this paper, a novel denoising autoenco... 详细信息
来源: 评论
An enhancement denoising autoencoder for rolling bearing fault diagnosis
收藏 引用
MEASUREMENT 2018年 130卷 448-454页
作者: Meng, Zong Zhan, Xuyang Li, Jing Pan, Zuozhou Yanshan Univ Qinhuangdao Peoples R China
denoising autoencoders can automatically learn in-depth features from complex data and extract concise expressions, which are used in fault diagnosis. However, they still have many drawbacks: (1) unsatisfactory result... 详细信息
来源: 评论
Feature learning using convolutional denoising autoencoder for activity recognition
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2021年 第17期33卷 10909-10922页
作者: Mohd Noor, Mohd Halim Univ Sains Malaysia Sch Comp Sci George Town 11800 Malaysia
Wearable technology offers a prospective solution to the increasing demand for activity monitoring in pervasive healthcare. Feature extraction and selection are crucial steps in activity recognition since it determine... 详细信息
来源: 评论
Elimination of Random Mixed Noise in ECG Using Convolutional denoising autoencoder With Transformer Encoder
收藏 引用
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 2024年 第4期28卷 1993-2004页
作者: Chen, Meng Li, Yongjian Zhang, Liting Liu, Lei Han, Baokun Shi, Wenzhuo Wei, Shoushui Shandong Univ Sch Control Sci & Engn Jinan 250061 Peoples R China Shandong Univ Shandong Prov Hosp Dept Cardiol Jinan 250061 Peoples R China Shandong Univ Inst Marine Sci & Technol Qingdao 266237 Peoples R China
Electrocardiogram (ECG) signals frequently encounter diverse types of noise, such as baseline wander (BW), electrode motion (EM) artifacts, muscle artifact (MA), and others. These noises often occur in combination dur... 详细信息
来源: 评论
Taxonomy-aware collaborative denoising autoencoder for personalized recommendation
收藏 引用
APPLIED INTELLIGENCE 2019年 第6期49卷 2101-2118页
作者: Zhang, Chunhong Li, Tiantian Ren, Zhibin Hu, Zheng Ji, Yang Beijing Univ Posts & Telecommun Sch Informat & Commun Engn Beijing Peoples R China Beijing Univ Posts & Telecommun Beijing Peoples R China Beijing Univ Posts & Telecommun State Key Lab Networking & Switching Technol Beijing Peoples R China
Taxonomies are ubiquitous in many real-world recommendation scenarios where each item is classified into a category of a predefined hierarchical taxonomy and provide important auxiliary information for inferring user ... 详细信息
来源: 评论
Trust-Aware Collaborative Filtering with a denoising autoencoder
收藏 引用
NEURAL PROCESSING LETTERS 2019年 第2期49卷 835-849页
作者: Wang, Meiqi Wu, Zhiyuan Sun, Xiaoxin Feng, Guozhong Zhang, Bangzuo Northeast Normal Univ Sch Informat Sci & Technol Changchun 130117 Jilin Peoples R China
Collaborative filtering is one of the most successful and extensive methods used by recommender systems for predicting the preferences of users. However, traditional collaborative filtering only uses rating informatio... 详细信息
来源: 评论
Condition monitoring and performance forecasting of wind turbines based on denoising autoencoder and novel convolutional neural networks
收藏 引用
ENERGY REPORTS 2021年 7卷 6354-6365页
作者: Jia, Xiongjie Han, Yang Li, Yanjun Sang, Yichen Zhang, Guolei Harbin Engn Univ Coll Power & Energy Engn Harbin Peoples R China
With the proportion of wind power in the grid increasing, the monitoring and maintenance of wind turbines is becoming more and more important for the reliability of the grid. In this study, a data-driven modelling fra... 详细信息
来源: 评论
Intrusion Detection in IoT Systems Using denoising autoencoder
收藏 引用
IEEE ACCESS 2024年 12卷 122401-122425页
作者: Alrayes, Fatma S. Zakariah, Mohammed Amin, Syed Umar Khan, Zafar Iqbal Helal, Maha Princess Nourah Bint Abdulrahman Univ Coll Comp & Informat Sci Informat Syst Dept Riyadh 11671 Saudi Arabia King Saud Univ Coll Comp & Informat Sci Riyadh 11362 Saudi Arabia Prince Sultan Univ Coll Comp & Informat Sci Riyadh 11586 Saudi Arabia Saudi Elect Univ Coll Comp & Informat Riyadh 11673 Saudi Arabia
Protection against unwanted intrusions is crucial for preserving the integrity and security of connected devices in the context of Internet of Things (IoT) networks. The growing number of IoT devices has made several ... 详细信息
来源: 评论
Trust-aware denoising autoencoder with spatial-temporal activity for cross-domain personalized recommendations
收藏 引用
NEUROCOMPUTING 2022年 511卷 477-494页
作者: Ahmed, Adeel Saleem, Khalid Khalid, Osman Gao, Jiechao Rashid, Umer Quaid i Azam Univ Dept Comp Sci Islamabad 45320 Pakistan COMSATS Univ Dept Comp Sci Abbottabad Campus Islamabad Pakistan Univ Virginia Dept Comp Sci Charlottesville VA USA
Recently, cross-domain recommendation systems have been very helpful in improving the quality of rec-ommendation and solving the problem of cold start and data sparsity. Cross-domain recommender sys-tems allow the tra... 详细信息
来源: 评论
SwinDAE: Electrocardiogram Quality Assessment Using 1D Swin Transformer and denoising autoencoder
收藏 引用
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 2023年 第12期27卷 5779-5790页
作者: Chen, Guanyu Shi, Tianyi Xie, Baoxing Zhao, Zhicheng Meng, Zhu Huang, Yadong Dong, Jin Beijing Acad Blockchain & Edge Comp Beijing 100080 Peoples R China Beijing Univ Posts & Telecommun Beijing 100088 Peoples R China Beijing Key Lab Network Syst & Network Culture Beijing 100124 Peoples R China Zhoushan Acad Marine Data Sci Zhoushan 316021 Peoples R China
Objective: Electrocardiogram (ECG) signals have wide-ranging applications in various fields, and thus it is crucial to identify clean ECG signals under different sensors and collection scenarios. Despite the availabil... 详细信息
来源: 评论