咨询与建议

限定检索结果

文献类型

  • 212 篇 期刊文献
  • 131 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 345 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 320 篇 工学
    • 181 篇 计算机科学与技术...
    • 126 篇 电气工程
    • 52 篇 信息与通信工程
    • 43 篇 控制科学与工程
    • 29 篇 软件工程
    • 25 篇 仪器科学与技术
    • 21 篇 电子科学与技术(可...
    • 18 篇 石油与天然气工程
    • 11 篇 动力工程及工程热...
    • 10 篇 机械工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 建筑学
    • 4 篇 化学工程与技术
    • 4 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 船舶与海洋工程
    • 3 篇 环境科学与工程(可...
  • 69 篇 理学
    • 32 篇 物理学
    • 25 篇 生物学
    • 9 篇 化学
    • 6 篇 数学
    • 6 篇 地球物理学
  • 44 篇 医学
    • 25 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 6 篇 特种医学
  • 23 篇 管理学
    • 19 篇 管理科学与工程(可...
  • 5 篇 农学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 345 篇 denoising autoen...
  • 65 篇 deep learning
  • 22 篇 convolutional ne...
  • 19 篇 noise reduction
  • 13 篇 neural network
  • 12 篇 machine learning
  • 11 篇 speech recogniti...
  • 10 篇 autoencoder
  • 8 篇 deep neural netw...
  • 8 篇 robust speech re...
  • 7 篇 feature enhancem...
  • 7 篇 transfer learnin...
  • 7 篇 anomaly detectio...
  • 7 篇 missing data
  • 7 篇 neural networks
  • 7 篇 classification
  • 7 篇 unsupervised lea...
  • 6 篇 collaborative fi...
  • 6 篇 fault diagnosis
  • 6 篇 noise

机构

  • 3 篇 nagaoka univ tec...
  • 3 篇 wuhan univ sch c...
  • 3 篇 acad sinica res ...
  • 2 篇 tsinghua univ de...
  • 2 篇 nanyang technol ...
  • 2 篇 natl taiwan univ...
  • 2 篇 univ calif irvin...
  • 2 篇 univ chinese aca...
  • 2 篇 donald bren scho...
  • 2 篇 nanyang technol ...
  • 2 篇 taiyuan univ tec...
  • 2 篇 harbin inst tech...
  • 2 篇 beijing univ pos...
  • 2 篇 univ sains malay...
  • 2 篇 nanjing univ sci...
  • 2 篇 tsinghua univ de...
  • 2 篇 tech univ libere...
  • 2 篇 natl inst techno...
  • 2 篇 univ calif irvin...
  • 2 篇 city univ hong k...

作者

  • 5 篇 wang longbiao
  • 5 篇 kai atsuhiko
  • 4 篇 tsao yu
  • 4 篇 ueda yuma
  • 3 篇 he fazhi
  • 3 篇 pan yiteng
  • 3 篇 schanze thomas
  • 3 篇 malek jiri
  • 3 篇 li jian
  • 3 篇 samann fars
  • 3 篇 liu bin
  • 2 篇 zhang tao
  • 2 篇 petr cerva
  • 2 篇 zhang lei
  • 2 篇 kang moses
  • 2 篇 baek jongbok
  • 2 篇 wang huawei
  • 2 篇 wang yuhao
  • 2 篇 padil khairul ha...
  • 2 篇 liu yang

语言

  • 333 篇 英文
  • 11 篇 其他
  • 1 篇 中文
检索条件"主题词=denoising autoencoder"
345 条 记 录,以下是321-330 订阅
Deep Learning of Transferable Representation for Scalable Domain Adaptation
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2016年 第8期28卷 2027-2040页
作者: Long, Mingsheng Wang, Jianmin Cao, Yue Sun, Jiaguang Yu, Philip S. Tsinghua Univ Tsinghua Natl Lab Informat Sci & Techonolgy TNLis Sch Software Beijing Peoples R China Tsinghua Univ Inst Data Sci Beijing Peoples R China Univ Illinois Chicago IL 60607 USA
Domain adaptation generalizes a learning model across source domain and target domain that are sampled from different distributions. It is widely applied to cross-domain data mining for reusing labeled information and... 详细信息
来源: 评论
Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images
收藏 引用
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING 2016年 第Jun.期116卷 24-41页
作者: Zhang, Puzhao Gong, Maoguo Su, Linzhi Liu, Jia Li, Zhizhou Xidian Univ Key Lab Intelligent Percept & Image Understanding Minist Educ Int Res Ctr Intelligent Percept & Computat Xian 710071 Shaanxi Provinc Peoples R China
Multi-spatial-resolution change detection is a newly proposed issue and it is of great significance in remote sensing, environmental and land use monitoring, etc. Though multi-spatial-resolution image pair are two kin... 详细信息
来源: 评论
Semi-supervised learning of the electronic health record for phenotype stratification
收藏 引用
JOURNAL OF BIOMEDICAL INFORMATICS 2016年 64卷 168-178页
作者: Beaulieu-Jones, Brett K. Greene, Casey S. Univ Penn Perelman Sch Med Grad Grp Genom & Computat Biol Philadelphia PA 19104 USA Univ Penn Perelman Sch Med Inst Biomed Informat Philadelphia PA 19104 USA Univ Penn Perelman Sch Med Dept Syst Pharmacol & Translat Therapeut Philadelphia PA 19104 USA Univ Penn Perelman Sch Med Inst Translat Med & Therapeut Philadelphia PA 19104 USA
Patient interactions with health care providers result in entries to electronic health records (EHRs). EHRs were built for clinical and billing purposes but contain many data points about an individual. Mining these r... 详细信息
来源: 评论
Multi-feature fusion deep networks
收藏 引用
NEUROCOMPUTING 2016年 218卷 164-171页
作者: Ma, Gang Yang, Xi Zhang, Bo Shi, Zhongzhi Chinese Acad Sci Key Lab Intelligent Informat Proc Inst Comp Technol Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing 100190 Peoples R China China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 221116 Peoples R China
In this paper, we propose a novel deep networks, multi-feature fusion deep networks (MFFDN), based on denoising autoencoder. MFFDN significantly reduces the classification error while giving the interpretability of th... 详细信息
来源: 评论
Robust Automatic Recognition of Speech with background music
Robust Automatic Recognition of Speech with background music
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Jiri Malek Jindrich Zdansky Petr Cerva Faculty of Mechatronics Informatics and Interdisciplinary Studies Technical University of Liberec Studentska 2 461 17 Czech Republic
This paper addresses the task of Automatic Speech Recognition (ASR) with music in the background, where the accuracy of recognition may deteriorate significantly. To improve the robustness of ASR in this task, e.g. fo... 详细信息
来源: 评论
SNR-Aware Convolutional Neural Network Modeling for Speech Enhancement  17
SNR-Aware Convolutional Neural Network Modeling for Speech E...
收藏 引用
17th Annual Conference of the International-Speech-Communication-Association (INTERSPEECH 2016)
作者: Fu, Szu-Wei Tsao, Yu Lu, Xugang Acad Sinica Res Ctr Informat Technol Innovat Taipei Taiwan Natl Taiwan Univ Dept Comp Sci & Informat Engn Taipei Taiwan Natl Inst Informat & Commun Technol Kyoto Japan
This paper proposes a signal-to-noise-ratio (SNR) aware convolutional neural network (CNN) model for speech enhancement (SE). Because the CNN model can deal with local temporal-spectral structures of speech signals, i... 详细信息
来源: 评论
Effective joint training of denoising feature space transforms and Neural Network based acoustic models
Effective joint training of denoising feature space transfor...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Takashi Fukuda Osamu Ichikawa Gakuto Kurata Ryuki Tachibana Samuel Thomas Bhuvana Ramabhadran IBM Watson Multimodal Chuo-ku Hakozaki Tokyo 103-8510 JAPAN IBM Watson Multimodal Yorktown Heights NY 10598 US
Neural Network (NN) based acoustic frontends, such as denoising autoencoders, are actively being investigated to improve the robustness of NN based acoustic models to various noise conditions. In recent work the joint... 详细信息
来源: 评论
Author Identification using Deep Learning  15
Author Identification using Deep Learning
收藏 引用
15th IEEE International Conference on Machine Learning and Applications (ICMLA)
作者: Mohsen, Ahmed M. El-Makky, Nagwa M. Ghanem, Nagia Alexandria Univ Fac Engn Alexandria Egypt
Authorship identification is the task of identifying the author of a given text from a set of suspects. The main concern of this task is to define an appropriate characterization of texts that captures the writing sty... 详细信息
来源: 评论
Convolution by Evolution Differentiable Pattern Producing Networks  16
Convolution by Evolution Differentiable Pattern Producing Ne...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Fernando, Chrisantha Banarse, Dylan Reynolds, Malcolm Besse, Frederic Pfau, David Jaderberg, Max Lanctot, Marc Wierstra, Daan Google DeepMind London England
In this work we introduce a differentiable version of the Compositional Pattern Producing Network, called the DPPN. Unlike a standard CPPN, the topology of a DPPN is evolved but the weights are learned. A Lamarckian a... 详细信息
来源: 评论
Bengali Handwritten Numeric Character Recognition using denoising autoencoders
Bengali Handwritten Numeric Character Recognition using Deno...
收藏 引用
IEEE International Conference on Engineering and Technology (ICETECH)
作者: Pal, Arghya Goa Univ Dept CST Taleigao Plateau 403206 Goa India
This work describes the recognition of Bengali Handwritten Numeral Recognition using Deep denoising autoencoder using Multilayer Perceptron (MLP) trained through backpropagation algorithm (DDA). To bring the weights o... 详细信息
来源: 评论