咨询与建议

限定检索结果

文献类型

  • 213 篇 期刊文献
  • 131 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 346 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 320 篇 工学
    • 181 篇 计算机科学与技术...
    • 126 篇 电气工程
    • 52 篇 信息与通信工程
    • 43 篇 控制科学与工程
    • 29 篇 软件工程
    • 25 篇 仪器科学与技术
    • 21 篇 电子科学与技术(可...
    • 18 篇 石油与天然气工程
    • 11 篇 动力工程及工程热...
    • 10 篇 机械工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 建筑学
    • 4 篇 化学工程与技术
    • 4 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 船舶与海洋工程
    • 3 篇 环境科学与工程(可...
  • 69 篇 理学
    • 32 篇 物理学
    • 25 篇 生物学
    • 9 篇 化学
    • 6 篇 数学
    • 6 篇 地球物理学
  • 44 篇 医学
    • 25 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 6 篇 特种医学
  • 23 篇 管理学
    • 19 篇 管理科学与工程(可...
  • 5 篇 农学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 346 篇 denoising autoen...
  • 65 篇 deep learning
  • 22 篇 convolutional ne...
  • 19 篇 noise reduction
  • 13 篇 neural network
  • 12 篇 machine learning
  • 11 篇 speech recogniti...
  • 10 篇 autoencoder
  • 8 篇 deep neural netw...
  • 8 篇 robust speech re...
  • 7 篇 feature enhancem...
  • 7 篇 transfer learnin...
  • 7 篇 anomaly detectio...
  • 7 篇 missing data
  • 7 篇 neural networks
  • 7 篇 classification
  • 7 篇 unsupervised lea...
  • 6 篇 collaborative fi...
  • 6 篇 fault diagnosis
  • 6 篇 noise

机构

  • 3 篇 nagaoka univ tec...
  • 3 篇 wuhan univ sch c...
  • 3 篇 acad sinica res ...
  • 2 篇 tsinghua univ de...
  • 2 篇 nanyang technol ...
  • 2 篇 natl taiwan univ...
  • 2 篇 univ calif irvin...
  • 2 篇 univ chinese aca...
  • 2 篇 donald bren scho...
  • 2 篇 nanyang technol ...
  • 2 篇 taiyuan univ tec...
  • 2 篇 harbin inst tech...
  • 2 篇 beijing univ pos...
  • 2 篇 univ sains malay...
  • 2 篇 nanjing univ sci...
  • 2 篇 tsinghua univ de...
  • 2 篇 tech univ libere...
  • 2 篇 natl inst techno...
  • 2 篇 univ calif irvin...
  • 2 篇 city univ hong k...

作者

  • 5 篇 wang longbiao
  • 5 篇 kai atsuhiko
  • 4 篇 tsao yu
  • 4 篇 ueda yuma
  • 3 篇 he fazhi
  • 3 篇 pan yiteng
  • 3 篇 schanze thomas
  • 3 篇 malek jiri
  • 3 篇 li jian
  • 3 篇 samann fars
  • 3 篇 liu bin
  • 2 篇 zhang tao
  • 2 篇 petr cerva
  • 2 篇 zhang lei
  • 2 篇 kang moses
  • 2 篇 baek jongbok
  • 2 篇 wang huawei
  • 2 篇 wang yuhao
  • 2 篇 padil khairul ha...
  • 2 篇 liu yang

语言

  • 334 篇 英文
  • 11 篇 其他
  • 1 篇 中文
检索条件"主题词=denoising autoencoder"
346 条 记 录,以下是331-340 订阅
排序:
Bengali Handwritten Numeric Character Recognition using denoising autoencoders
Bengali Handwritten Numeric Character Recognition using Deno...
收藏 引用
IEEE International Conference on Engineering and Technology (ICETECH)
作者: Pal, Arghya Goa Univ Dept CST Taleigao Plateau 403206 Goa India
This work describes the recognition of Bengali Handwritten Numeral Recognition using Deep denoising autoencoder using Multilayer Perceptron (MLP) trained through backpropagation algorithm (DDA). To bring the weights o... 详细信息
来源: 评论
Recognition of online Handwritten Bangla Characters using Hierarchical System with denoising autoencoders  4
Recognition of online Handwritten Bangla Characters using Hi...
收藏 引用
INTERNATIONAL CONFERENCE ON COMPUTATION OF POWER, ENERGY, INFORMATION AND COMMUNICATION
作者: Pal, Arghya Pawar, J. D. Goa Univ Dept CST Taleigao 403206 Goa India
This work describes the recognition of online handwritten Bengali characters using Deep denoising autoencoder with Multilayer Perceptron (MLP) trained through backpropagation algorithm [I]. Initial pre-training has be... 详细信息
来源: 评论
Deep Difference Representation Learning for Multi-spectral Imagery Change Detection
Deep Difference Representation Learning for Multi-spectral I...
收藏 引用
2016 5th International Conference on Advanced Materials and Computer Science(ICAMCS 2016)
作者: Hui Zhang Puzhao Zhang Department of Integrated Circuit Design and Integrated System School of MicroelectronicsXidian University Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China Xidian University
Change detection is an ongoing hot topic in multi-spectral imagery applications,how to exploit the available spectral information effectively for change detection is still an open *** the noise interference and redund... 详细信息
来源: 评论
Vibration Based Multimodal Feature Learning Framework For Wind Turbine Gearbox Fault Diagnosis
Vibration Based Multimodal Feature Learning Framework For Wi...
收藏 引用
The 29th International Congress on Condition Monitoring and Diagnostic Engineering Management
作者: Guoqian Jiang Ping Xie Xiao Wang Qun He Meng Chen School of Electrical Engineering Yanshan University
Fault diagnosis of wind turbine gearboxes has attracted great attention,and it is still a quite challenging task to extract effective features from the raw vibration signals to achieve accurate and reliable fault ***,... 详细信息
来源: 评论
SEPARATION MATRIX OPTIMIZATION USING ASSOCIATIVE MEMORY MODEL FOR BLIND SOURCE SEPARATION  23
SEPARATION MATRIX OPTIMIZATION USING ASSOCIATIVE MEMORY MODE...
收藏 引用
23rd European Signal Processing Conference (EUSIPCO)
作者: Omachi, Motoi Ogawa, Tetsuji Kobayashi, Tetsunori Fujieda, Masaru Katagiri, Kazuhiro Waseda Univ Dept Comp Sci Tokyo Japan Oki Elect Ind Co Ltd Minato Tokyo Japan
A source signalis estimated using an associative memory model (AMM) and used for separation matrix optimization in linear blind source separation (BSS) to yield high quality and less distorted speech. Linear-filtering... 详细信息
来源: 评论
Frequency Offset Correction in Single Sideband(SSB) Speech by Deep Neural Network for Speaker Verification  16
Frequency Offset Correction in Single Sideband(SSB) Speech b...
收藏 引用
16th Annual Conference of the International-Speech-Communication-Association (INTERSPEECH 2015)
作者: Xing, Hua Liu, Gang Hansen, John H. L. Univ Texas Dallas Ctr Robust Speech Syst Richardson TX 75083 USA
Communication system mismatch represents a major influence for loss in speaker recognition performance. This paper considers a type of nonlinear communication system mismatch- modulation/demodulation (Mod/DeMod) carri... 详细信息
来源: 评论
Bottleneck Features from SNR-Adaptive denoising Deep Classifier for Speaker Identification
Bottleneck Features from SNR-Adaptive Denoising Deep Classif...
收藏 引用
Asia-Pacific-Signal-and-Information-Processing-Association Annual Summit and Conference (APSIPA ASC)
作者: Tan, Zhili Mak, Man-Wai Hong Kong Polytech Univ Dept Elect & Informat Engn Ctr Signal Proc Hong Kong Hong Kong Peoples R China
In this paper, we explore the potential of using deep learning for extracting speaker-dependent features for noise robust speaker identification. More specifically, an SNR-adaptive denoising classifier is constructed ... 详细信息
来源: 评论
S-VECTOR: A DISCRIMINATIVE REPRESENTATION DERIVED FROM I-VECTOR FOR SPEAKER VERIFICATION  23
S-VECTOR: A DISCRIMINATIVE REPRESENTATION DERIVED FROM I-VEC...
收藏 引用
23rd European Signal Processing Conference (EUSIPCO)
作者: Isik, Yusuf Ziya Erdogan, Hakan Sarikaya, Ruhi TUBITAK BILGEM Gebze Turkey Sabanci Univ Fac Engn & Nat Sci Istanbul Turkey Microsoft Corp Redmond WA 98052 USA
Representing data in ways to disentangle and factor out hidden dependencies is a critical step in speaker recognition systems. In this work, we employ deep neural networks (DNN) as a feature extractor to disentangle a... 详细信息
来源: 评论
Loop Closure Detection for Visual SLAM Systems Using Deep Neural Networks  34
Loop Closure Detection for Visual SLAM Systems Using Deep Ne...
收藏 引用
34th Chinese Control Conference (CCC)
作者: Gao, Xiang Zhang, Tao Tsinghua Univ Dept Automat Beijing 100084 Peoples R China
The detection of loop closure is of essential importance in visual simultaneous localization and mapping systems. It can reduce the accumulating drift of localization algorithms if the loops are checked correctly. Tra... 详细信息
来源: 评论
SEPARATION MATRIX OPTIMIZATION USING ASSOCIATIVE MEMORY MODEL FOR BLIND SOURCE SEPARATION
SEPARATION MATRIX OPTIMIZATION USING ASSOCIATIVE MEMORY MODE...
收藏 引用
European Signal Processing Conference
作者: Motoi Omachi Tetsuji Ogawa Tetsunori Kobayashi Masaru Fujieda Kazuhiro Katagiri Department of the computer science Waseda University Oki Electric Industry Co. Ltd.
A source signal is estimated using an associative memory model (AMM) and used for separation matrix optimization in linear blind source separation (BSS) to yield high quality and less distorted speech. Linear-filterin... 详细信息
来源: 评论