咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 support vector m...
  • 1 篇 hierarchical dee...
  • 1 篇 pattern classifi...
  • 1 篇 computer vision ...
  • 1 篇 feedforward neur...
  • 1 篇 neural computing...
  • 1 篇 feature represen...
  • 1 篇 learning pairwis...
  • 1 篇 face recognition
  • 1 篇 layer features
  • 1 篇 ear recognition
  • 1 篇 convolution
  • 1 篇 knowledge engine...
  • 1 篇 ear
  • 1 篇 ear images
  • 1 篇 pairwise support...
  • 1 篇 feature extracti...
  • 1 篇 cnn models
  • 1 篇 image representa...
  • 1 篇 image classifica...

机构

  • 1 篇 menoufia univ fa...
  • 1 篇 harbin inst tech...
  • 1 篇 northeast agr un...

作者

  • 1 篇 zhang hongzhi
  • 1 篇 wu xiaohe
  • 1 篇 du yong
  • 1 篇 omara ibrahim
  • 1 篇 zuo wangmeng

语言

  • 1 篇 英文
检索条件"主题词=discriminant correlation analysis algorithm"
1 条 记 录,以下是1-10 订阅
排序:
Learning pairwise SVM on hierarchical deep features for ear recognition
收藏 引用
IET BIOMETRICS 2018年 第6期7卷 557-566页
作者: Omara, Ibrahim Wu, Xiaohe Zhang, Hongzhi Du, Yong Zuo, Wangmeng Harbin Inst Technol Sch Comp Sci & Technol Harbin Heilongjiang Peoples R China Menoufia Univ Fac Sci Dept Math Shibin Al Kawm Egypt Northeast Agr Univ Dept Elect & Informat Engn Harbin Heilongjiang Peoples R China
Convolutional neural networks (CNNs)-based deep features have been demonstrated with remarkable performance in various vision tasks, such as image classification and face verification. Compared with the hand-crafted d... 详细信息
来源: 评论