咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 交通运输工程

主题

  • 1 篇 road vehicles
  • 1 篇 support vector m...
  • 1 篇 multiple cellpho...
  • 1 篇 distraction dete...
  • 1 篇 regression analy...
  • 1 篇 phone usage
  • 1 篇 knowledge-based ...
  • 1 篇 real-time drivin...
  • 1 篇 window size
  • 1 篇 lane-keeping per...
  • 1 篇 cellphone usage
  • 1 篇 road safety
  • 1 篇 feature extracti...
  • 1 篇 optimal sliding ...
  • 1 篇 detection algori...
  • 1 篇 driver informati...
  • 1 篇 feature selectio...
  • 1 篇 extreme gradient...
  • 1 篇 noninstinct dete...
  • 1 篇 real-time detect...

机构

  • 1 篇 minist educ key ...
  • 1 篇 saic gen motors ...
  • 1 篇 tongji univ coll...

作者

  • 1 篇 liu tao
  • 1 篇 chai chen
  • 1 篇 zhou ziyao
  • 1 篇 islam md mohaimi...

语言

  • 1 篇 英文
检索条件"主题词=distraction detection methods"
1 条 记 录,以下是1-10 订阅
排序:
Non-instinct detection of cellphone usage from lane-keeping performance based on eXtreme gradient boosting and optimal sliding windows
收藏 引用
IET INTELLIGENT TRANSPORT SYSTEMS 2022年 第11期16卷 1600-1610页
作者: Liu, Tao Zhou, Ziyao Chai, Chen Islam, Md Mohaiminul Tongji Univ Coll Transportat Engn Shanghai 201804 Peoples R China Minist Educ Key Lab Rd & Traff Engn Shanghai Peoples R China Saic Gen Motors Corp Ltd Strateg Alliance & New Business Dept Shanghai Peoples R China
Driving distraction caused by cellphone usage has become a common safety threat. As distraction detection methods based on driver's position or eye movement may raise privacy issues, a promising way is to analyze ... 详细信息
来源: 评论