咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 distributed gnn ...
  • 1 篇 communication op...
  • 1 篇 surveys and over...
  • 1 篇 distributed gnn ...
  • 1 篇 graph data manag...

机构

  • 1 篇 hec montreal mil...
  • 1 篇 carnegie mellon ...
  • 1 篇 beijing univ pos...
  • 1 篇 peking univ 5 yi...
  • 1 篇 hong kong univ s...

作者

  • 1 篇 miao xupeng
  • 1 篇 gu xizhi
  • 1 篇 cui bin
  • 1 篇 shao yingxia
  • 1 篇 li yawen
  • 1 篇 yin hongbo
  • 1 篇 chen lei
  • 1 篇 zhang wentao
  • 1 篇 li hongzheng

语言

  • 1 篇 英文
检索条件"主题词=distributed GNN systems"
1 条 记 录,以下是1-10 订阅
排序:
distributed Graph Neural Network Training: A Survey
收藏 引用
ACM COMPUTING SURVEYS 2024年 第8期56卷 1-39页
作者: Shao, Yingxia Li, Hongzheng Gu, Xizhi Yin, Hongbo Li, Yawen Miao, Xupeng Zhang, Wentao Cui, Bin Chen, Lei Beijing Univ Posts & Telecommun 10 Xitucheng Rd Haidian Dist Beijing 100876 Peoples R China Carnegie Mellon Univ 5000 Forbes Ave Pittsburgh PA 15213 USA HEC Montreal Mila Quebec AI Inst 6666 St Urbain St Montreal PQ H2S 3H1 Canada Peking Univ 5 Yiheyuan Rd Beijing 100871 Peoples R China Hong Kong Univ Sci & Technol Guangzhou 1 Du Xue Rd Guangzhou 511442 Peoples R China
Graph neural networks (gnns) are a type of deep learning models that are trained on graphs and have been successfully applied in various domains. Despite the effectiveness of gnns, it is still challenging for gnns to ... 详细信息
来源: 评论