咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 计算机科学与技术...

主题

  • 2 篇 distributed gnn ...
  • 1 篇 distributed gnn ...
  • 1 篇 communication op...
  • 1 篇 surveys and over...
  • 1 篇 graph neural net...
  • 1 篇 graph data manag...

机构

  • 1 篇 hec montreal mil...
  • 1 篇 carnegie mellon ...
  • 1 篇 beijing univ pos...
  • 1 篇 peking univ 5 yi...
  • 1 篇 georgia institut...
  • 1 篇 hong kong univ s...
  • 1 篇 university of vi...
  • 1 篇 university of vi...

作者

  • 1 篇 miao xupeng
  • 1 篇 gu xizhi
  • 1 篇 anand iyer
  • 1 篇 cui bin
  • 1 篇 haiying shen
  • 1 篇 shao yingxia
  • 1 篇 li yawen
  • 1 篇 yin hongbo
  • 1 篇 chen lei
  • 1 篇 shohaib mahmud
  • 1 篇 zhang wentao
  • 1 篇 li hongzheng

语言

  • 2 篇 英文
检索条件"主题词=distributed GNN training"
2 条 记 录,以下是1-10 订阅
排序:
PACER: Accelerating distributed gnn training Using Communication-Efficient Partition Refinement and Caching
收藏 引用
Proceedings of the ACM on Networking 2024年 第CoNEXT4期2卷 1-18页
作者: Shohaib Mahmud Haiying Shen Anand Iyer University of Virginia Charottesville VA USA University of Virginia Charlottesville VA USA Georgia Institute of Technology Atlanta GA USA
Despite recent breakthroughs in distributed Graph Neural Network (gnn) training, large-scale graphs still generate significant network communication overhead, decreasing time and resource efficiency. Although recently... 详细信息
来源: 评论
distributed Graph Neural Network training: A Survey
收藏 引用
ACM COMPUTING SURVEYS 2024年 第8期56卷 1-39页
作者: Shao, Yingxia Li, Hongzheng Gu, Xizhi Yin, Hongbo Li, Yawen Miao, Xupeng Zhang, Wentao Cui, Bin Chen, Lei Beijing Univ Posts & Telecommun 10 Xitucheng Rd Haidian Dist Beijing 100876 Peoples R China Carnegie Mellon Univ 5000 Forbes Ave Pittsburgh PA 15213 USA HEC Montreal Mila Quebec AI Inst 6666 St Urbain St Montreal PQ H2S 3H1 Canada Peking Univ 5 Yiheyuan Rd Beijing 100871 Peoples R China Hong Kong Univ Sci & Technol Guangzhou 1 Du Xue Rd Guangzhou 511442 Peoples R China
Graph neural networks (gnns) are a type of deep learning models that are trained on graphs and have been successfully applied in various domains. Despite the effectiveness of gnns, it is still challenging for gnns to ... 详细信息
来源: 评论