咨询与建议

限定检索结果

文献类型

  • 33 篇 会议
  • 17 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 51 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 50 篇 工学
    • 26 篇 电气工程
    • 26 篇 计算机科学与技术...
    • 13 篇 信息与通信工程
    • 7 篇 仪器科学与技术
    • 6 篇 控制科学与工程
    • 6 篇 软件工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
  • 10 篇 理学
    • 7 篇 物理学
    • 2 篇 系统科学
    • 1 篇 数学
  • 5 篇 医学
    • 5 篇 临床医学
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 51 篇 distributed clas...
  • 5 篇 wireless sensor ...
  • 4 篇 multisensor fusi...
  • 4 篇 decision fusion
  • 4 篇 distributed mach...
  • 4 篇 diffusion
  • 3 篇 error correcting...
  • 3 篇 coding
  • 3 篇 support vector m...
  • 3 篇 wireless sensor ...
  • 3 篇 fault-tolerance
  • 2 篇 soft-decision de...
  • 2 篇 support vector m...
  • 2 篇 diffusion adapta...
  • 2 篇 p2p-based classi...
  • 2 篇 algorithms
  • 2 篇 mobile agent
  • 2 篇 ganglia
  • 2 篇 distributed regr...
  • 2 篇 neural networks

机构

  • 3 篇 syracuse univ de...
  • 2 篇 univ. of padova
  • 2 篇 max planck inst....
  • 2 篇 syracuse univ de...
  • 2 篇 monash univ fac ...
  • 1 篇 nanyang technol ...
  • 1 篇 indiana univ lab...
  • 1 篇 new jersey inst ...
  • 1 篇 chinese acad sci...
  • 1 篇 ruhr univ bochum...
  • 1 篇 syracuse univ de...
  • 1 篇 signal process. ...
  • 1 篇 univ salerno dep...
  • 1 篇 tech univ darmst...
  • 1 篇 nanjing univ pos...
  • 1 篇 faculty of infor...
  • 1 篇 amirkabir univ t...
  • 1 篇 univ malaysia pe...
  • 1 篇 eth dept math se...
  • 1 篇 univ salerno die...

作者

  • 4 篇 varshney pk
  • 4 篇 wang ty
  • 3 篇 han yss
  • 3 篇 varshney pramod ...
  • 3 篇 sayed ali h.
  • 2 篇 christou ct
  • 2 篇 necioglu bf
  • 2 篇 amir amiza
  • 2 篇 ghasemzadeh hass...
  • 2 篇 muma michael
  • 2 篇 ang hock hee
  • 2 篇 bordignon virgin...
  • 2 篇 khan asad i.
  • 2 篇 frossard pascal
  • 2 篇 gopalkrishnan vi...
  • 2 篇 vlaski stefan
  • 2 篇 ng wee keong
  • 2 篇 su wei
  • 2 篇 zoubir abdelhak ...
  • 2 篇 matta vincenzo

语言

  • 51 篇 英文
检索条件"主题词=distributed classification"
51 条 记 录,以下是11-20 订阅
排序:
Further results on fault-tolerant distributed classification using error correcting codes
Further results on fault-tolerant distributed classification...
收藏 引用
Conference on Multisensor, Multisource Information Fusion
作者: Wang, TY Han, YSS Varshney, PK Syracuse Univ Dept Elect Engn & Comp Sci Syracuse NY 13244 USA
In this paper, we consider the distributed classification problem in wireless sensor networks. The DCFECC-SD approach employing the binary code matrix has recently been proposed to cope with the errors caused by both ... 详细信息
来源: 评论
IN-NETWORK ADAPTIVE CLUSTER ENUMERATION FOR distributed classification AND LABELING  24
IN-NETWORK ADAPTIVE CLUSTER ENUMERATION FOR DISTRIBUTED CLAS...
收藏 引用
24th European Signal Processing Conference (EUSIPCO)
作者: Teklehaymanot, Freweyni K. Muma, Michael Liu, Jun Zoubir, Abdelhak M. Tech Univ Darmstadt Signal Proc Grp Merckstr 25 D-64283 Darmstadt Germany Tech Univ Darmstadt Grad Sch CE Dolivostr 15 D-64293 Darmstadt Germany
A crucial first step for signal processing decentralized sensor networks with node-specific interests is to agree upon a common unique labeling of all observed sources in the network. The knowledge "who observes ... 详细信息
来源: 评论
Collaborative Signal Processing for Action Recognition in Body Sensor Networks: A distributed classification Algorithm Using Motion Transcripts
Collaborative Signal Processing for Action Recognition in Bo...
收藏 引用
9th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)
作者: Ghasemzadeh, Hassan Loseu, Vitali Jafari, Roozbeh Univ Texas Dallas Dept Elect Engn Embedded Syst & Signal Proc Lab Richardson TX 75080 USA
Body sensor networks are emerging as a promising platform for remote human monitoring. With the aim of extracting bio-kinematic parameters from distributed body-worn sensors, these systems require collaboration of sen... 详细信息
来源: 评论
Maximum Entropy Modeling for distributed classification, Regression, and Interaction Discovery
Maximum Entropy Modeling for Distributed Classification, Reg...
收藏 引用
作者: Zhang, Yanxin PennState University Libraries
学位级别:Doctor of Philosophy
The maximum entropy (ME) principle has been widely applied to specialized applications in statistical learning and pattern recognition. The concept of ME method is to find a probability distribution that satisfies wha... 详细信息
来源: 评论
Data-based distributed classification and Its Performance Analysis
Data-based Distributed Classification and Its Performance An...
收藏 引用
International Conference on Information Fusion
作者: Sandeep Gutta Qi Cheng School of Electrical and Computer Engineering Oklahoma State University Stillwater OK 74078 USA
distributed classification using multimodal sensors is a problem of very high practical importance. Most of the existing distributed classification systems are designed under the assumptions that prior class probabili... 详细信息
来源: 评论
Collaborative Classifier Agents: Studying the Impact of Learning in distributed Document classification  07
Collaborative Classifier Agents: Studying the Impact of Lear...
收藏 引用
7th ACM/IEEE Joint Conference on Digital Libraries
作者: Ke, Weimao Mostafa, Javed Fu, Yueyu Indiana Univ Lab Appl Informat Res Bloomington IN 47405 USA
We developed a multi-agent framework where agents had limited/distributed knowledge for document classification and collaborated with each other to overcome the knowledge distribution. Each agent was equipped with a c... 详细信息
来源: 评论
distributed Data classification in Sensor Networks
Distributed Data Classification in Sensor Networks
收藏 引用
29th ACM SIGACT-SIGOPS Symposium on Principles of distributed Computing
作者: Eyal, Ittay Keidar, Idit Rom, Raphael Technion Israel Inst Technol IL-32000 Haifa Israel
Low overhead analysis of large distributed data sets is necessary for current data centers and for future sensor networks. In such systems, each node holds some data value, e.g., a local sensor read, and a concise pic... 详细信息
来源: 评论
distributed Automatic Modulation classification With Multiple Sensors
收藏 引用
IEEE SENSORS JOURNAL 2010年 第11期10卷 1779-1785页
作者: Xu, Jefferson L. Su, Wei Zhou, MengChu New Jersey Inst Technol Dept Elect & Comp Engn Newark NJ 07102 USA Tongji Univ Dept Comp Sci & Engn Shanghai 201804 Peoples R China USA RDECOM Commun Elect RD&E Ctr Ft Monmouth NJ 07703 USA
Automatic modulation classification (AMC) has been intensively studied to enhance the successful classification rate, particularly for overcoming the physical limit that deals with weak signals received in a noncooper... 详细信息
来源: 评论
A combined decision fusion and channel coding scheme for distributed fault-tolerant classification in wireless sensor networks
收藏 引用
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 2006年 第7期5卷 1695-1705页
作者: Wang, Tsang-Yi Han, Yunghsiang S. Chen, Biao Varshney, Pramod K. Natl Sun Yat Sen Univ Inst Commun Engn Kaohsiung 80424 Taiwan Natl Taiwan Univ Grad Inst Commun Engn Sanhsia Taiwan Syracuse Univ Dept Elect Engn & Comp Sci Syracuse NY 13244 USA
In this paper, we consider the distributed classification problem in wireless sensor networks. Local decisions made by local sensors, possibly in the presence of faults, are transmitted to a fusion center through fadi... 详细信息
来源: 评论
Optimized distributed Automatic Modulation classification in Wireless Sensor Networks Using Information Theoretic Measures
收藏 引用
IEEE SENSORS JOURNAL 2017年 第10期17卷 3079-3091页
作者: Hakimi, Saeed Hodtani, Ghosheh Abed Ferdowsi Univ Mashhad Dept Elect Engn Mashhad *** Iran
Automatic modulation classification of digital signals is essential for intelligent communication systems. This paper addresses the distributed classification of digital amplitudephase modulated signals in a system of... 详细信息
来源: 评论