咨询与建议

限定检索结果

文献类型

  • 55 篇 会议
  • 32 篇 期刊文献

馆藏范围

  • 87 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 75 篇 工学
    • 63 篇 计算机科学与技术...
    • 31 篇 软件工程
    • 25 篇 控制科学与工程
    • 20 篇 电气工程
    • 3 篇 信息与通信工程
    • 3 篇 石油与天然气工程
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 城乡规划学
  • 14 篇 管理学
    • 14 篇 管理科学与工程(可...
  • 4 篇 理学
    • 3 篇 数学
    • 1 篇 物理学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 87 篇 distributed cons...
  • 10 篇 dcop
  • 9 篇 multi-agent syst...
  • 7 篇 resource allocat...
  • 5 篇 algorithms
  • 5 篇 leximin
  • 5 篇 coordination
  • 4 篇 distributed prob...
  • 4 篇 constrained opti...
  • 4 篇 multiagent syste...
  • 4 篇 multiple objecti...
  • 3 篇 max-sum
  • 3 篇 multi-agent coor...
  • 3 篇 task scheduling
  • 3 篇 power restoratio...
  • 3 篇 multiagent syste...
  • 3 篇 multiagent
  • 3 篇 multi-agent syst...
  • 3 篇 adopt
  • 2 篇 auctions

机构

  • 5 篇 ben gurion univ ...
  • 4 篇 florida inst tec...
  • 4 篇 nagoya inst tech...
  • 4 篇 new mexico state...
  • 3 篇 department of co...
  • 2 篇 national institu...
  • 2 篇 washington unive...
  • 2 篇 department of in...
  • 2 篇 georgia inst tec...
  • 2 篇 univ michigan de...
  • 2 篇 department of in...
  • 2 篇 univ southampton...
  • 1 篇 arcesium india p...
  • 1 篇 pontifical catho...
  • 1 篇 computer science
  • 1 篇 ibm res india ne...
  • 1 篇 inst cognit sci ...
  • 1 篇 york univ dept e...
  • 1 篇 ben gurion univ ...
  • 1 篇 new mexico state...

作者

  • 9 篇 zivan roie
  • 8 篇 matsuo hiroshi
  • 8 篇 matsui toshihiro
  • 8 篇 william yeoh
  • 7 篇 yeoh william
  • 6 篇 yokoo makoto
  • 5 篇 fioretto ferdina...
  • 5 篇 roie zivan
  • 4 篇 hirayama katsuto...
  • 4 篇 silaghi marius
  • 3 篇 khoi d. hoang
  • 3 篇 hoang khoi d.
  • 3 篇 ferdinando fiore...
  • 3 篇 pontelli enrico
  • 3 篇 meseguer pedro
  • 3 篇 akshat kumar
  • 3 篇 makoto yokoo
  • 3 篇 okimoto tenda
  • 2 篇 khanna sankalp
  • 2 篇 stantic bela

语言

  • 81 篇 英文
  • 3 篇 其他
  • 3 篇 中文
检索条件"主题词=distributed constraint optimization"
87 条 记 录,以下是71-80 订阅
Infinite-Horizon Proactive Dynamic DCOPs  17
Infinite-Horizon Proactive Dynamic DCOPs
收藏 引用
International Conference on Autonomous Agents and Multiagent Systems
作者: Khoi D. Hoang Ping Hou Ferdinando Fioretto William Yeoh Roie Zivan Makoto Yokoo Department of Computer Science New Mexico State University Department of Industrial and Operations Engineering University of Michigan Department of Industrial Engineering and Management Ben Gurion University of the Negev Department of Informatics Kyushu University
The distributed constraint optimization Problem (DCOP) formulation is a powerful tool for modeling multi-agent coordination problems. Researchers have recently extended this model to Proactive Dynamic DCOPs (PD-DCOPs)... 详细信息
来源: 评论
Improving DPOP with function filtering  10
Improving DPOP with function filtering
收藏 引用
Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1 - Volume 1
作者: Ismel Brito Pedro Meseguer IIIA - CSIC Bellaterra Spain
DPOP is an algorithm for distributed constraint optimization which has, as main drawback, the exponential size of some of its messages. Recently, some algorithms for distributed cluster tree elimination have been prop... 详细信息
来源: 评论
Partially Cooperative Multi-Agent Periodic Indivisible Resource Allocation  21
Partially Cooperative Multi-Agent Periodic Indivisible Resou...
收藏 引用
Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems
作者: Yuval Gabai Schlosberg Roie Zivan Ben Gurion University of the Negev Beer Sheva Israel
Asymmetric distributed constraint optimization problems (ADCOPs) in which agents are partially cooperative, is a model for representing multi-agent optimization problems in which agents, are willing to cooperate in or... 详细信息
来源: 评论
Improving BnB-ADOPT~+-AC  12
Improving BnB-ADOPT~+-AC
收藏 引用
International Conference on Autonomous Agents and Multiagent Systems
作者: Patricia Gutierrez Pedro Meseguer IIIA - CSIC Universitat Autonoma de Barcelona
Several multiagent tasks can be formulated and solved as DCOPs. BnB-ADOPT~+-AC is one of the most efficient algorithms for optimal DCOP solving. It is based on BnBADOPT, removing redundant messages and maintaining sof... 详细信息
来源: 评论
Coordination for uncertain outcomes using distributed neighbor exchange  10
Coordination for uncertain outcomes using distributed neighb...
收藏 引用
Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1 - Volume 1
作者: James Atlas Keith Decker University of Delaware Newark DE
Coordination of agent activites in non-deterministic, distributed environments is computationally difficult. distributed constraint optimization (DCOP) provides a rich framework for modeling such multi-agent coordinat... 详细信息
来源: 评论
Caching schemes for DCOP search algorithms  09
Caching schemes for DCOP search algorithms
收藏 引用
International Conference on Autonomous Agents and Multiagent Systems
作者: William Yeoh Pradeep Varakantham Sven Koenig Computer Science Robotics Institute
distributed constraint optimization (DCOP) is useful for solving agent-coordination problems. Any-space DCOP search algorithms require only a small amount of memory but can be sped up by caching information. However, ... 详细信息
来源: 评论
Coordinating Multi-Agent Reinforcement Learning with Limited Communication  13
Coordinating Multi-Agent Reinforcement Learning with Limited...
收藏 引用
International Conference on Autonomous Agents and Multiagent Systems
作者: Chongjie Zhang Victor Lesser University of Massachusetts Amherst Amherst MA USA
Coordinated multi-agent reinforcement learning (MARL) provides a promising approach to scaling learning in large cooperative multi-agent systems. distributed constraint optimization (DCOP) techniques have been used to... 详细信息
来源: 评论
Multi-Variable Agents Decomposition for DCOPs to Exploit Multi-Level Parallelism  15
Multi-Variable Agents Decomposition for DCOPs to Exploit Mul...
收藏 引用
International Conference on Autonomous Agents and Multiagent Systems
作者: Ferdinando Fioretto William Yeoh Enrico Pontelli Computer Science Department New Mexico State University
Current DCOP algorithms suffer from a major limiting assumption—each agent can handle only a single variable of the problem—which limits their scalability. This paper proposes a novel Multi-Variable Agent (MVA) DCOP... 详细信息
来源: 评论
Embedding Preference Elicitation Within the Search for DCOP Solutions  20
Embedding Preference Elicitation Within the Search for DCOP ...
收藏 引用
Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems
作者: Yuanming Xiao Atena M. Tabakhi William Yeoh Washington University in St. Louis Saint Louis MO USA
A key assumption in distributed constraint optimization Problem (DCOP) model is that all constraints are fully specified or known a priori, which may not hold in applications where constraints encode preferences of hu... 详细信息
来源: 评论
An Overview of Privacy Improvements to k-Optimal DCOP Algorithms  09
An Overview of Privacy Improvements to k-Optimal DCOP Algori...
收藏 引用
International Conference on Autonomous Agents and Multiagent Systems
作者: Rachel Greenstadt Dept of Computer Science Drexel University
For agents to be trusted with sensitive data, they must have mechanisms to protect their users' privacy. This paper explores the privacy properties of k-optimal algorithms: those algorithms that produce locally op... 详细信息
来源: 评论