咨询与建议

限定检索结果

文献类型

  • 146 篇 会议
  • 87 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 234 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 216 篇 工学
    • 195 篇 计算机科学与技术...
    • 57 篇 电气工程
    • 27 篇 软件工程
    • 24 篇 控制科学与工程
    • 14 篇 信息与通信工程
    • 7 篇 仪器科学与技术
    • 5 篇 电子科学与技术(可...
    • 2 篇 机械工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 网络空间安全
    • 1 篇 冶金工程
    • 1 篇 建筑学
    • 1 篇 石油与天然气工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 食品科学与工程(可...
    • 1 篇 城乡规划学
    • 1 篇 生物工程
  • 36 篇 管理学
    • 32 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 2 篇 公共管理
    • 2 篇 图书情报与档案管...
  • 19 篇 理学
    • 13 篇 数学
    • 8 篇 系统科学
    • 4 篇 化学
    • 1 篇 物理学
    • 1 篇 天文学
    • 1 篇 生物学
  • 4 篇 医学
    • 3 篇 基础医学(可授医学...
    • 1 篇 临床医学
  • 1 篇 文学
    • 1 篇 新闻传播学

主题

  • 234 篇 distributed data...
  • 36 篇 data mining
  • 14 篇 grid computing
  • 12 篇 association rule...
  • 10 篇 clustering
  • 10 篇 mapreduce
  • 10 篇 privacy
  • 10 篇 multi-agent syst...
  • 9 篇 parallel data mi...
  • 8 篇 hadoop
  • 7 篇 mobile agent
  • 7 篇 association rule...
  • 7 篇 classification
  • 6 篇 internet of thin...
  • 6 篇 big data
  • 5 篇 parallel algorit...
  • 5 篇 grid
  • 5 篇 knowledge discov...
  • 5 篇 web services
  • 4 篇 distributed clus...

机构

  • 5 篇 univ calabria de...
  • 5 篇 st petersburg el...
  • 5 篇 st petersburg el...
  • 4 篇 univ maryland ba...
  • 4 篇 gdynia maritime ...
  • 3 篇 nanjing univ sta...
  • 3 篇 agnik llc columb...
  • 3 篇 icar cnr i-87036...
  • 2 篇 univ veracruzana...
  • 2 篇 icar cnr arcavac...
  • 2 篇 tsinghua univ de...
  • 2 篇 univ bradford sc...
  • 2 篇 tsinghua univ ts...
  • 2 篇 icar cnr arcavac...
  • 2 篇 univ calabria di...
  • 2 篇 pondicherry univ...
  • 2 篇 islamic azad uni...
  • 2 篇 shanghai jiao to...
  • 2 篇 广西大学
  • 2 篇 ben gurion univ ...

作者

  • 10 篇 talia domenico
  • 9 篇 kholod ivan
  • 8 篇 cesario eugenio
  • 5 篇 czarnowski irene...
  • 5 篇 kargupta h
  • 5 篇 trunfio paolo
  • 4 篇 jedrzejowicz pio...
  • 3 篇 kargupta hillol
  • 3 篇 limon xavier
  • 3 篇 kechadi m-tahar
  • 3 篇 grimaldo francis...
  • 3 篇 le-khac nhien-an
  • 3 篇 giannella c
  • 2 篇 guerra-hernandez...
  • 2 篇 weinberger j
  • 2 篇 di fatta giusepp...
  • 2 篇 fortino giancarl...
  • 2 篇 gyani jayadev
  • 2 篇 rodionov sergey
  • 2 篇 hanley d

语言

  • 229 篇 英文
  • 3 篇 中文
  • 2 篇 其他
检索条件"主题词=distributed data mining"
234 条 记 录,以下是71-80 订阅
排序:
distributed Execution Environment for data mining as Service
Distributed Execution Environment for Data Mining as Service
收藏 引用
IEEE North-West-Russia-Section Young Researchers in Electrical and Electronic Engineering Conference (ElConRusNW)
作者: Kholod, Ivan Borisenko, Konstantin St Petersburg Electrotech Univ LETI Fac Comp Sci & Technol St Petersburg Russia
the article describes the mapping of the algorithm decomposed into functional blocks on a distributed execution environment. In addition, it describes the architecture and implementation of service to perform data min... 详细信息
来源: 评论
CrossFIM: a spark-based hybrid frequent itemset mining algorithm for large datasets
收藏 引用
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS 2025年 第4期28卷 1-23页
作者: Raj, Shashi Ramesh, Dharavath Gantela, Prabhakar Bakhtiyarpur Coll Engn Dept Comp Sci & Engn Patna 803212 Bihar India Indian Sch Mines Indian Inst Technol Dept Comp Sci & Engn Dhanbad 826004 Jharkhand India Univ Econ & Human Sci Departmet Comp Sci Warsaw Poland Swarna Bharathi Inst Sci & Technol Dept Comp Sci & Engn Khammam 507001 Telangana India
Frequent Itemset mining (FIM) is the fundamental technique for discovering interesting patterns from transactional datasets. Typical algorithmic solutions for extracting such patterns are inefficient since they lead t... 详细信息
来源: 评论
Learning latent variable models from distributed and abstracted data
收藏 引用
INFORMATION SCIENCES 2011年 第14期181卷 2964-2988页
作者: Zhang, Xiaofeng Cheung, William K. Li, C. H. Harbin Inst Technol Sch Comp Sciecne & Technol Shenzhen Grad Sch Kowloon Tong Hong Kong Peoples R China Hong Kong Baptist Univ Dept Comp Sci Kowloon Tong Hong Kong Peoples R China
Discovering global knowledge from distributed data sources is challenging, where the important issues include the ever-increasing data volume at the highly distributed sources and the general concern on data privacy. ... 详细信息
来源: 评论
Fast distributed outlier detection in mixed-attribute data sets
收藏 引用
data mining AND KNOWLEDGE DISCOVERY 2006年 第2-3期12卷 203-228页
作者: Otey, ME Ghoting, A Parthasarathy, S Ohio State Univ Dept Comp Sci & Engn Columbus OH 43210 USA
Efficiently detecting outliers or anomalies is an important problem in many areas of science, medicine and information technology. Applications range from data cleaning to clinical diagnosis, from detecting anomalous ... 详细信息
来源: 评论
Social choice in distributed classification tasks: Dealing with vertically partitioned data
收藏 引用
INFORMATION SCIENCES 2016年 332卷 56-71页
作者: Recarnonde-Mendoza, Mariana Bazzan, Ana L. C. Univ Fed Rio Grande do Sul Inst Informat PPGC Porto Alegre RS Brazil
In many situations, a centralized, conventional classification task can not be performed because the data is not available in a central facility. In such cases, we are dealing with distributed data mining problems, in... 详细信息
来源: 评论
A distributed data clustering algorithm in P2P networks
收藏 引用
APPLIED SOFT COMPUTING 2017年 51卷 147-167页
作者: Azimi, Rasool Sajedi, Hedieh Ghayekhloo, Mohadeseh Islamic Azad Univ Qazvin Branch Young Researchers & Elite Club Qazvin Iran Univ Tehran Coll Sci Sch Math Stat & Comp Dept Comp Sci Tehran Iran
Clustering is one of the important data mining issues, especially for large and distributed data analysis. distributed computing environments such as Peer-to-Peer (P2P) networks involve separated/scattered data source... 详细信息
来源: 评论
Induction of multiclass multifeature split decision trees from distributed data
收藏 引用
PATTERN RECOGNITION 2009年 第9期42卷 1786-1794页
作者: Ouyang, Jie Patel, Nilesh Sethi, Ishwar Oakland Univ Dept Comp Sci & Engn Intelligent Informat Engn Lab Rochester MI 48309 USA
The decision tree-based classification is a popular approach for pattern recognition and data mining. Most decision tree induction methods assume training data being present at one central location. Given the growth i... 详细信息
来源: 评论
Evolutionary k-means for distributed data sets
收藏 引用
NEUROCOMPUTING 2014年 第1期127卷 30-42页
作者: Naldi, M. C. Campello, R. J. G. B. Univ Fed Vicosa BR-38810000 Rio Paranaiba MG Brazil Univ Sao Paulo Inst Math & Comp Sci BR-13560970 Sao Carlos SP Brazil
One of the challenges for clustering resides in dealing with data distributed in separated repositories, because most clustering techniques require the data to be centralized. One of them, k-means, has been elected as... 详细信息
来源: 评论
A Review of distributed data Models for Learning  12th
A Review of Distributed Data Models for Learning
收藏 引用
12th International Conference on Hybrid Artificial Intelligent Systems (HAIS)
作者: Angel Rodriguez, Miguel Fernandez, Alberto Peregrin, Antonio Herrera, Francisco Univ Huelva Dept Informat Technol Huelva Spain Univ Granada Dept Comp Sci & Artificial Intelligence Granada Spain
This paper deals with aspects of data distribution for machine learning tasks, considering the advantages as well as the drawbacks that are frequently associated with data partitioning and its different models. This s... 详细信息
来源: 评论
Communication efficient construction of decision trees over heterogeneously distributed data
Communication efficient construction of decision trees over ...
收藏 引用
4th IEEE International Conference on data mining
作者: Giannella, C Liu, K Olsen, T Kargupta, H Univ Maryland Baltimore Cty Dept Comp Sci & Elect Engn Baltimore MD 21250 USA
We present an algorithm designed to efficiently construct a decision tree over heterogeneously distributed data without centralizing. We compare our algorithm against a standard centralized decision tree implementatio... 详细信息
来源: 评论