咨询与建议

限定检索结果

文献类型

  • 20 篇 期刊文献
  • 10 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 32 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 29 篇 工学
    • 28 篇 计算机科学与技术...
    • 4 篇 电气工程
    • 4 篇 控制科学与工程
    • 2 篇 软件工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 动力工程及工程热...
  • 6 篇 理学
    • 3 篇 数学
    • 2 篇 系统科学
    • 1 篇 物理学
    • 1 篇 地球物理学
    • 1 篇 生物学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...

主题

  • 32 篇 distributed evol...
  • 3 篇 neuroevolution
  • 3 篇 island model
  • 2 篇 surrogate-assist...
  • 2 篇 search-based sof...
  • 2 篇 island architect...
  • 2 篇 nature-inspired ...
  • 2 篇 software tools
  • 2 篇 optimization
  • 2 篇 volunteer comput...
  • 2 篇 computational mo...
  • 2 篇 bayesian optimis...
  • 2 篇 pool-based evolu...
  • 2 篇 multi-objective ...
  • 2 篇 nsga-ii
  • 2 篇 parallel computi...
  • 2 篇 continuous optim...
  • 2 篇 adaptability
  • 2 篇 cloud computing
  • 1 篇 multi-objective ...

机构

  • 3 篇 inst tecnol tiju...
  • 2 篇 univ granada gra...
  • 2 篇 univ granada dep...
  • 2 篇 charles universi...
  • 2 篇 inst tecnolg tij...
  • 1 篇 univ granada dep...
  • 1 篇 bulgarian acad s...
  • 1 篇 univ politecn ma...
  • 1 篇 hanyang univ dep...
  • 1 篇 indian inst tech...
  • 1 篇 univ cadiz cadiz
  • 1 篇 natl tech univ a...
  • 1 篇 inst tecnol tiju...
  • 1 篇 zhejiang normal ...
  • 1 篇 univ extremadura...
  • 1 篇 univ granada ets...
  • 1 篇 univ extremadura...
  • 1 篇 natl res council...
  • 1 篇 china univ geosc...
  • 1 篇 cent univ venezu...

作者

  • 6 篇 garcia-valdez ma...
  • 5 篇 merelo j. j.
  • 2 篇 fernandez de veg...
  • 2 篇 castillo p. a.
  • 2 篇 balcar štěpán
  • 2 篇 garcia-sanchez p...
  • 2 篇 trujillo leonard...
  • 2 篇 merelo guervos j...
  • 2 篇 chen wei-neng
  • 2 篇 zhang jun
  • 2 篇 chandra rohitash
  • 2 篇 balabanov todor
  • 1 篇 robles victor
  • 1 篇 muelas santiago
  • 1 篇 yang qiang
  • 1 篇 marc-andré gardn...
  • 1 篇 ortega julio
  • 1 篇 cerrolaza m.
  • 1 篇 merelo juan-j
  • 1 篇 xiong shengwu~1 ...

语言

  • 31 篇 英文
  • 1 篇 其他
检索条件"主题词=distributed evolutionary algorithms"
32 条 记 录,以下是1-10 订阅
排序:
Strategy for Individuals Distribution by Incident Nodes Participation in Star Topology of distributed evolutionary algorithms
收藏 引用
CYBERNETICS AND INFORMATION TECHNOLOGIES 2016年 第1期16卷 80-88页
作者: Balabanov, Todor Zankinski, Iliyan Barova, Maria BAS Inst Informat & Commun Technol Sofia 1113 Bulgaria
One of the strongest advantages of distributed evolutionary algorithms (DEAs) is that they can be implemented in distributed environment of heterogeneous computing nodes. Usually such computing nodes differ in hardwar... 详细信息
来源: 评论
An Asynchronous distributed Cooperative Coevolutionary Algorithm for Multilayer Influence Maximization
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 2025年
作者: Yang, Guo Wei, Feng-Feng Hu, Xiao-Min Jeon, Sang-Woon Zhang, Jun Chen, Wei-Neng South China Univ Technol Sch Civil Engn & Transportat Guangzhou 510006 Peoples R China South China Univ Technol State Key Lab Subtrop Bldg & Urban Sci Guangzhou 510006 Peoples R China Guangdong Univ Technol Dept Comp Sci Guangzhou 510006 Peoples R China Hanyang Univ Dept Elect & Elect Engn Ansan 15588 South Korea Nankai Univ Coll Artificial Intelligence Tianjin 30071 Peoples R China Zhejiang Normal Univ Sch Comp Sci & Technol Jinhua 321004 Peoples R China Hanyang Univ Dept Elect & Elect Engn Ansan 15588 South Korea
The influence maximization (IM) problem in large-scale social networks has attracted great attention. Considering the interactions among multiple online social platforms, the multilayer IMproblem poses further challen... 详细信息
来源: 评论
Surrogate-assisted distributed swarm optimisation for computationally expensive geoscientific models
收藏 引用
COMPUTATIONAL GEOSCIENCES 2023年 第6期27卷 939-954页
作者: Chandra, Rohitash Sharma, Yash Vardhan Univ New South Wales Sch Math & Stat Transit Artificial Intelligence Res Grp Sydney Australia Indian Inst Technol Roorkee Mech & Ind Engn Dept Roorkee India
evolutionary algorithms provide gradient-free optimisation which is beneficial for models that have difficulty in obtaining gradients;for instance, geoscientific landscape evolution models. However, such models are at... 详细信息
来源: 评论
distributed Bayesian optimisation framework for deep neuroevolution
收藏 引用
NEUROCOMPUTING 2022年 第0期470卷 51-65页
作者: Chandra, Rohitash Tiwari, Animesh Univ New South Wales UNSW Data Sci Hub Sydney NSW Australia Univ New South Wales Sch Math & Stat Sydney NSW Australia Indian Inst Technol Guwahati Dept Civil Engn Gauhati Assam India
Neuroevolution is a machine learning method for evolving neural networks parameters and topology with a high degree of flexibility that makes them applicable to a wide range of architectures. Neuroevolution has been p... 详细信息
来源: 评论
Random Selection of Parameters in Asynchronous Pool-Based evolutionary algorithms
Random Selection of Parameters in Asynchronous Pool-Based Ev...
收藏 引用
IEEE Congress on evolutionary Computation (IEEE CEC)
作者: Garcia-Valdez, Mario Marquez, Rene Trujillo, Leonardo Merelo, J. J. Inst Tecnol Tijuana Tijuana BC Mexico Univ Granada Comp Architecture & Technol Granada Spain
Synchronous operation is not the most natural, as in biologically inspired, mode to run distributed algorithms. In many grid, cloud or volunteer setups nodes are heterogeneous, or simply are not available at the exact... 详细信息
来源: 评论
A Hybrid distributed EA Approach for Energy Optimisation on Smartphones
收藏 引用
EMPIRICAL SOFTWARE ENGINEERING 2022年 第6期27卷 155-155页
作者: Bokhari, Mahmoud A. Alexander, Bradley Taibah Univ Comp Sci Dept Software Engn Res Grp Medina Saudi Arabia Univ Adelaide Sch Comp Sci Optimisat & Logist Adelaide SA Australia
For many people, mobile platforms are now an essential part of everyday life. A defining feature of mobile platforms is their reliance on battery performance. Due to this reliance, there is a pressing need for mobile ... 详细信息
来源: 评论
A distributed Swarm Optimizer With Adaptive Communication for Large-Scale Optimization
收藏 引用
IEEE TRANSACTIONS ON CYBERNETICS 2020年 第7期50卷 3393-3408页
作者: Yang, Qiang Chen, Wei-Neng Gu, Tianlong Zhang, Huaxiang Yuan, Huaqiang Kwong, Sam Zhang, Jun Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou 510006 Peoples R China South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China South China Univ Technol Guangdong Prov Key Lab Computat Intelligence & Cy Guangzhou 510006 Peoples R China Guilin Univ Elect Technol Sch Comp Sci & Engn Guilin 541004 Peoples R China Shandong Normal Univ Sch Informat Sci & Engn Jinan 250014 Peoples R China Dongguan Univ Technol Sch Comp Sci & Network Secur Dongguan 523808 Peoples R China City Univ Hong Kong Dept Comp Sci Hong Kong Peoples R China
Large-scale optimization with high dimensionality and high computational cost becomes ubiquitous nowadays. To tackle such challenging problems efficiently, devising distributed evolutionary computation algorithms is i... 详细信息
来源: 评论
Solving Combinatorial Puzzles with Parallel evolutionary algorithms  12th
Solving Combinatorial Puzzles with Parallel Evolutionary Alg...
收藏 引用
12th International Conference on Large-Scale Scientific Computations (LSSC)
作者: Balabanov, Todor Ivanov, Stoyan Ketipov, Rumen Bulgarian Acad Sci Inst Informat & Commun Technol Acad Georgi Bonchev StrBlock 2 Sofia 1113 Bulgaria
Rubik's cube is the most popular combinatorial puzzle. It is well known that solutions of the combinatorial problems are generally hard to find. If 90. clockwise rotations of the cube's sides are taken as oper... 详细信息
来源: 评论
distributed multi-objective evolutionary optimization using island-based selective operator application
收藏 引用
APPLIED SOFT COMPUTING 2019年 85卷 105757-000页
作者: Garcia-Sanchez, P. Ortega, J. Gonzalez, J. Castillo, P. A. Merelo, J. J. Univ Cadiz Dept Comp Sci & Engn ESI Cadiz Spain Univ Granada Dept Comp Architecture & Technol ETSIIT CITIC Granada Spain
Parallel island-model co-evolutionary algorithms are well-known methods, suitable for dealing with large multi-objective optimization problems. This paper proposes a version of these algorithms where each island modif... 详细信息
来源: 评论
Heterogenní ostrovní modely
Heterogenní ostrovní modely
收藏 引用
作者: Balcar, Štěpán Charles University of Prague
The work deals with heterogeneous island models. The work designs and implements a new island model based on knowledge of homogeneous models of evolutionary algorithms. The model allows dynamic replanning of general c... 详细信息
来源: 评论