咨询与建议

限定检索结果

文献类型

  • 11 篇 会议
  • 9 篇 期刊文献

馆藏范围

  • 20 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 19 篇 工学
    • 10 篇 电气工程
    • 7 篇 计算机科学与技术...
    • 6 篇 控制科学与工程
    • 4 篇 信息与通信工程
    • 1 篇 仪器科学与技术
    • 1 篇 石油与天然气工程
  • 5 篇 理学
    • 2 篇 物理学
    • 2 篇 系统科学
    • 1 篇 数学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 20 篇 distributed grad...
  • 7 篇 distributed opti...
  • 5 篇 convergence
  • 5 篇 multi-agent netw...
  • 3 篇 optimization
  • 3 篇 byzantine attack...
  • 3 篇 finite-time cons...
  • 2 篇 data minimizatio...
  • 2 篇 servers
  • 2 篇 signal processin...
  • 2 篇 directed graphs
  • 1 篇 reed-solomon cod...
  • 1 篇 interpolating li...
  • 1 篇 approximation al...
  • 1 篇 computational po...
  • 1 篇 noise measuremen...
  • 1 篇 average consensu...
  • 1 篇 descent
  • 1 篇 statistics
  • 1 篇 big data

机构

  • 2 篇 univ minnesota d...
  • 2 篇 univ calif davis...
  • 1 篇 air force res la...
  • 1 篇 dept. of elec. a...
  • 1 篇 natl univ singap...
  • 1 篇 univ michigan ee...
  • 1 篇 bradley univ dep...
  • 1 篇 department of el...
  • 1 篇 indian inst tech...
  • 1 篇 elect power res ...
  • 1 篇 univ waterloo de...
  • 1 篇 univ cergy ponto...
  • 1 篇 natl univ singap...
  • 1 篇 tech univ berlin...
  • 1 篇 tech univ berlin...
  • 1 篇 tufts univ dept ...
  • 1 篇 cold spring harb...
  • 1 篇 conservatoire na...
  • 1 篇 purdue univ sch ...
  • 1 篇 sorbonne univ cn...

作者

  • 2 篇 lai lifeng
  • 2 篇 eichinger tobias
  • 2 篇 khatana vivek
  • 2 篇 salapaka murti v
  • 2 篇 kuepper axel
  • 2 篇 cao xinyang
  • 1 篇 du bin
  • 1 篇 murti v. salapak...
  • 1 篇 xin kuo
  • 1 篇 saraswat govind
  • 1 篇 wang jing
  • 1 篇 charalambides ne...
  • 1 篇 xinyang cao
  • 1 篇 wang shuche
  • 1 篇 liu jun
  • 1 篇 patel sourav
  • 1 篇 lu jiangang
  • 1 篇 tan vincent y. f...
  • 1 篇 vivek khatana
  • 1 篇 lin guanqiang

语言

  • 20 篇 英文
检索条件"主题词=distributed gradient descent"
20 条 记 录,以下是11-20 订阅
排序:
distributed optimization for deep learning with gossip exchange
收藏 引用
NEUROCOMPUTING 2019年 330卷 287-296页
作者: Blot, Michael Picard, David Thome, Nicolas Cord, Matthieu Sorbonne Univ CNRS UPMC Univ Paris 06 LIP6 UMR 7606 4 Pl Jussieu F-75005 Paris France Univ Cergy Pontoise CNRS Univ Paris Seine ENSEAETIS UMR 8051 Paris France Conservatoire Natl Arts & Metiers CEDRIC 292 Rue St Martin F-75003 Paris France
We address the issue of speeding up the training of convolutional neural networks by studying a distributed method adapted to stochastic gradient descent. Our parallel optimization setup uses several threads, each app... 详细信息
来源: 评论
An Approximate distributed gradient Estimation Method for Networked System Optimization Under Limited Communications
收藏 引用
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS 2020年 第12期50卷 5142-5151页
作者: Wang, Jing Pham, Khanh D. Bradley Univ Dept Elect & Comp Engn Peoria IL 61625 USA Air Force Res Lab AFRL RVSWS Kirtland AFB Albuquerque NM 87117 USA
This paper considers the networked system optimization problem by cooperatively finding an approximately optimal solution to the overall network convex cost function, which is the sum of the individual cost functions ... 详细信息
来源: 评论
Scalable Evidential K-Nearest Neighbor Classification on Big Data
收藏 引用
IEEE TRANSACTIONS ON BIG DATA 2024年 第3期10卷 226-237页
作者: Gong, Chaoyu Demmel, Jim You, Yang Natl Univ Singapore Sch Comp Singapore 119077 Singapore Univ Calif Berkeley Dept Elect Engn & Comp Sci Berkeley CA 94720 USA
The K -Nearest Neighbor (K-NN) algorithm has garnered widespread utilization in real-world scenarios, due to its exceptional interpretability that other classification algorithms may not have. The evidential K-NN (EK-... 详细信息
来源: 评论
D-DistADMM: A O(1/k) distributed ADMM for distributed Optimization in Directed Graph Topologies  59
D-DistADMM: A O(1/k) Distributed ADMM for Distributed Optimi...
收藏 引用
59th IEEE Conference on Decision and Control (CDC)
作者: Khatana, Vivek Salapaka, Murti, V Univ Minnesota Dept Elect & Comp Engn Minneapolis MN 55455 USA
We focus on the problem of minimizing a finite sum f(x) = Sigma(n)(i=1) f(i)(x) of n functions f(i), where f(i) are convex and available only locally to an agent i. The n agents are connected in a directed network G(V... 详细信息
来源: 评论
gradient-Consensus Method for distributed Optimization in Directed Multi-Agent Networks
Gradient-Consensus Method for Distributed Optimization in Di...
收藏 引用
American Control Conference (ACC)
作者: Khatana, Vivek Saraswat, Govind Patel, Sourav Salapaka, Murti, V Univ Minnesota Dept Elect & Comp Engn Minneapolis MN 55455 USA
In this article, a distributed optimization problem for minimizing a sum, Sigma(n)(i=1) f(i), of convex objective functions, f(i), on directed graph topologies is addressed. Here each function f(i) is a function of n ... 详细信息
来源: 评论
distributed Data Minimization for Decentralized Collaborative Filtering Systems  23
Distributed Data Minimization for Decentralized Collaborativ...
收藏 引用
24th International Conference on distributed Computing and Networking (ICDCN)
作者: Eichinger, Tobias Kuepper, Axel Tech Univ Berlin Serv Ctr Networking Berlin Germany
Data minimization is a legal principle that mandates the limitation of personal data to a necessary minimum in order to protect the privacy of individuals. In this light, we address ourselves to decentralized collabor... 详细信息
来源: 评论
WEIGHTED gradient CODING WITH LEVERAGE SCORE SAMPLING
WEIGHTED GRADIENT CODING WITH LEVERAGE SCORE SAMPLING
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Charalambides, Neophytos Pilanci, Mert Hero, Alfred O., III Univ Michigan EECS Dept Ann Arbor MI 48109 USA Stanford Univ EE Dept Stanford CA 94305 USA
A major hurdle in machine learning is scalability to massive datasets. Approaches to overcome this hurdle include compression of the data matrix and distributing the computations. Leverage score sampling provides a co... 详细信息
来源: 评论
Tree gradient Coding Considering Communication Delays and Partial Stragglers  59
Tree Gradient Coding Considering Communication Delays and Pa...
收藏 引用
59th Annual IEEE International Conference on Communications (IEEE ICC)
作者: Shah, Raj Tiwari, Utsav Thomas, Anoop Indian Inst Technol Bhubaneswar Sch Elect Sci Bhubaneswar India
There are two major problems while training large machine learning models using distributed gradient descent. The first is the problem of straggling workers, and the second is the communication delays in transmitting ... 详细信息
来源: 评论
On data minimization and anonymity in pervasive mobile-to-mobile recommender systems
收藏 引用
PERVASIVE AND MOBILE COMPUTING 2024年 103卷
作者: Eichinger, Tobias Kuepper, Axel Tech Univ Berlin Serv Centr Networking SNET Ernst Reuter Pl 7 D-10587 Berlin Germany
Data minimization is a legal principle that mandates limiting the collection of personal data to a necessary minimum. In this context, we address ourselves to pervasive mobile -to -mobile recommender systems in which ... 详细信息
来源: 评论
gradient-Consensus Method for distributed Optimization in Directed Multi-Agent Networks
Gradient-Consensus Method for Distributed Optimization in Di...
收藏 引用
American Control Conference
作者: Vivek Khatana Govind Saraswat Sourav Patel Murti V. Salapaka department of Electrical and Computer Engineering University of Minnesota Minneapolis USA
In this article, a distributed optimization problem for minimizing a sum, Σ_i = 1~n, f_i, of convex objective functions, f_i, on directed graph topologies is addressed. Here each function f i is a function of n varia... 详细信息
来源: 评论