咨询与建议

限定检索结果

文献类型

  • 2 篇 会议
  • 1 篇 期刊文献

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 工学
    • 2 篇 计算机科学与技术...
    • 1 篇 船舶与海洋工程
  • 2 篇 理学
    • 1 篇 数学
    • 1 篇 物理学
    • 1 篇 生物学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 3 篇 distributed memo...
  • 2 篇 parallel and dis...
  • 2 篇 moea/d
  • 2 篇 multi-objective ...
  • 1 篇 fast multipole m...
  • 1 篇 relaxed inner-ou...
  • 1 篇 flexible krylov ...
  • 1 篇 large electromag...
  • 1 篇 high performance...
  • 1 篇 approximate inve...

机构

  • 2 篇 hosei univ fac c...
  • 1 篇 hosei univ grad ...
  • 1 篇 univ tennessee d...
  • 1 篇 eads ccr ctr tou...
  • 1 篇 cerfacs f-31057 ...
  • 1 篇 tokai univ sch i...

作者

  • 2 篇 sato yuji
  • 1 篇 giraud l
  • 1 篇 lancou j
  • 1 篇 midtlyng mads
  • 1 篇 sylvand c
  • 1 篇 ikami ryo
  • 1 篇 sato mikiko
  • 1 篇 hirayama tomoya

语言

  • 2 篇 英文
  • 1 篇 其他
检索条件"主题词=distributed memory environment"
3 条 记 录,以下是1-10 订阅
排序:
Adaptive PBI for Massively Parallel MOEA/D in a distributed memory environment
Adaptive PBI for Massively Parallel MOEA/D in a Distributed ...
收藏 引用
IEEE Congress on Evolutionary Computation (CEC)
作者: Sato, Yuji Hirayama, Tomoya Ikami, Ryo Hosei Univ Fac Comp & Informat Sci Tokyo Japan
This paper proposes an adaptive PBI for massively parallel MOEA/D in a distributed memory environment. Massively parallelization in a distributed memory environment effectively speeds up evolutionary multi-objective o... 详细信息
来源: 评论
On the parallel solution of large industrial wave propagation problems
收藏 引用
JOURNAL OF COMPUTATIONAL ACOUSTICS 2006年 第1期14卷 83-111页
作者: Giraud, L Lancou, J Sylvand, C CERFACS F-31057 Toulouse France Univ Tennessee Dept Comp Sci Knoxville TN 37996 USA EADS CCR Ctr Toulouse F-31700 Blagnac France
The use of Fast Multipole Methods (FMM) combined with embedded Krylov solvers preconditioned by a sparse approximate inverse is investigated for the solution of large linear systems arising in industrial acoustic and ... 详细信息
来源: 评论
Diffusely distributed Parallelization of MOEA/D with Edge Weight Vectors Sharing
Diffusely Distributed Parallelization of MOEA/D with Edge We...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Sato, Yuji Midtlyng, Mads Sato, Mikiko Hosei Univ Fac Comp & Informat Sci Tokyo Japan Hosei Univ Grad Sch Comp & Informat Sci Tokyo Japan Tokai Univ Sch Informat & Telecommun Engn Tokyo Japan
This paper proposes the partitioning method with edge weight vectors sharing for parallel distributed MOEA/D in a distributed memory environment. Massively parallelization in a distributed memory environment effective... 详细信息
来源: 评论