This paper investigates the boundary control design and the stability analysis for an axially moving strip system under the external time-varying disturbances. Based on the infinite dimensional dynamical model, the ac...
详细信息
This paper investigates the boundary control design and the stability analysis for an axially moving strip system under the external time-varying disturbances. Based on the infinite dimensional dynamical model, the active control strategies are acted on the boundary of the system to deal with the problems of vibration suppression and nonlinear deadzone input characteristic. In addition, a disturbance observer is constructed to handle the bounded and uncertain boundary disturbance. With the proposed boundary control laws, the states of themoving strip system are proven to converge to a neighbourhood of the equilibrium points, namely, the stability of the moving strip system can be guaranteed. Through comparing the simulation results, the effectiveness of the boundary control law is verified.
Reduced-order boundary feedback controls are obtained through weak formulations of proper orthogonal decomposition system models. Control gain information is used to determine model fidelity. A fixed-point iteration s...
详细信息
Reduced-order boundary feedback controls are obtained through weak formulations of proper orthogonal decomposition system models. Control gain information is used to determine model fidelity. A fixed-point iteration scheme is used to incorporate the reduced-order control in the full-order simulation for validation. The effectiveness of the reduced-order control on the reduced and full-order models is demonstrated.
A systematic flatness-based motion planning approach for a structure consisting of coupled flexible bending beams is introduced. The beams are equipped with in-domain piezoelectric macro-fiber composite (MFC) actuator...
详细信息
A systematic flatness-based motion planning approach for a structure consisting of coupled flexible bending beams is introduced. The beams are equipped with in-domain piezoelectric macro-fiber composite (MFC) actuators and are coupled by an elastic string, modeled as spring, which connects the tip masses of adjacent beams. This setup provides a challenging benchmark experiment to evaluate control concepts. Hamilton's principle leads to the equations of motion involving spatially varying parameters due to the different material characteristics of the carrier structure and the attached MFC-actuators. The flat output is constructed by exploiting the spectral system representation and enables a differential parameterization of the system states and inputs. This parameterization transfers the motion planning problem into a trajectory assignment problem for the flat output. The resulting flatness-based feedforward control law is analyzed and evaluated at an experimental setup. To increase the performance and the robustness w.r.t. model uncertainties and external disturbances the flatness-based feedforward control is amended by a feedback controller with observer in the spirit of the two-degrees-of-freedom control approach.
In this paper, the constrained problem is investigated for both flexible string model and Euler-Bernoulli beam model with the tip payload, based on an infinite dimensional generalisation of a distributed control metho...
详细信息
In this paper, the constrained problem is investigated for both flexible string model and Euler-Bernoulli beam model with the tip payload, based on an infinite dimensional generalisation of a distributed control method. The control objectives are to develop the control law so that the motion of flexible mechanical systems can track a desired reference signal, and ensure that the string or beam remain in a constrained space. We prove that, with the proposed control, the tracking error is exponentially stable without violation of the constraint. The proof of convergence is based on an Integral-Barrier Lyapunov Function (IBLF), and extensive simulations are provided to illustrate the performance of the control system.
This article deals with the problem of observer-based feedback compensator design for a linear reaction-advection-diffusion equation subject to a time-varying diffusion coefficient, a time-varying advection coefficien...
详细信息
This article deals with the problem of observer-based feedback compensator design for a linear reaction-advection-diffusion equation subject to a time-varying diffusion coefficient, a time-varying advection coefficient, and a space-time-varying reaction coefficient. To solve such a problem, these coefficients are written in parametric forms under their boundedness assumptions. By considering these parametric forms of the coefficients and the distribution functions for control actuation and non-collocated measurement, a parameter-dependent observer-based feedback compensator is constructed such that the resulting closed-loop coupled equation exponentially converges to a bounded set of the equilibrium profile in the spatial L2 norm. With the aid of the Lyapunov technique and variants of Poincare-Wirtinger's inequality, a sufficient condition for the existence of such feedback compensator is presented in the form of convex constraints. Finally, extensive simulation results for a numerical example and a class of steelmaking processes are presented to support the proposed design method. For the collocated measurement case, both theoretical and simulation results show that the proposed observer-based feedback compensator can provide a better control performance than the static feedback compensator in the presence of measurement disturbances.
A new formulation of physical thermal models for variable plug flow through a pipe is proposed. The derived model is based on a commonly used one-dimensional distributedparameter model, which explicitly takes into ac...
详细信息
A new formulation of physical thermal models for variable plug flow through a pipe is proposed. The derived model is based on a commonly used one-dimensional distributedparameter model, which explicitly takes into account the heat capacity of the jacket of the pipe. The main result of the present contribution is the constitution of the equivalence of this model with a serial connection of a pure delay or transport system and another partial differential equation (PDE), subsequently called delay-partial differential equation (DPDE) model. The means for obtaining the proposed model comprise operational calculus in the Laplace domain as well as classical theory of characteristics. The finite-dimensional approximation of the DPDE model leads to a delay differential equation (DDE) system, which can be seen as a generalization of commonly used DDE models consisting of a first-order low-pass filter subject to an input delay. The proposed model is compared to several alternative models in simulations and experimental studies. (C) 2020 Elsevier Ltd. All rights reserved.
This paper addresses the geometric control. of the position of a liquid solid interface in a melting process of a material known as Stefan problem. The system model is hybrid, i.e. the dynamical behavior of the liquid...
详细信息
This paper addresses the geometric control. of the position of a liquid solid interface in a melting process of a material known as Stefan problem. The system model is hybrid, i.e. the dynamical behavior of the liquid-phase temperature is modeled by a heat equation while the motion of the moving boundary is described by an ordinary differential equation. The control is applied at one boundary as a heat flux and the second moving boundary represents the liquid solid interface whose position is the controlled variable. The control objective is to ensure a desired position of the liquid solid interface. The control law is designed using the concept of characteristic index, from geometric control theory, directly issued from the hybrid model without any reduction of the partial differential equation. It is shown by use of Lyapunoy stability test that the control law yields an exponentially stable closed-loop system. The performance of the developed control law is evaluated through simulation by considering zinc melting. (C) 2014 Elsevier Ltd. All rights reserved.
Electrodeposition process control problem is formulated and solved as a boundary control problem based on unknown parameter model set for a diffusion process controlled by a nonlinear reaction on the boundary. First, ...
详细信息
Electrodeposition process control problem is formulated and solved as a boundary control problem based on unknown parameter model set for a diffusion process controlled by a nonlinear reaction on the boundary. First, the concentration changes in the diffusion layer is feed-forward planned due to the set reference concentration on the cathode boundary and then adapted to a real process according to the certainty equivalent principle based on the measured current densities that compensates for the model uncertainties. In industry, the concentration of species is unobserved except the mass flux on the boundary is measured and controlled as the cathodic current. The diffusivity and apparent transfer coefficient of the deposition reaction are considered as unknown parameters;they are evaluated online along with the concentration on the boundary. The Zakai filtering method is applied for parameters estimation. This article demonstrates through simulation a relatively good convergence of the Zakai estimates to the exact parameters and convergence of the boundary concentration to the set references for tracking.
It is proved that a multivariable distributedsystem, that has no poles on the boundary of the half-plane of analyticity of its transfer function, can be stabilized with a stable strictly proper lumped compensator if ...
详细信息
It is proved that a multivariable distributedsystem, that has no poles on the boundary of the half-plane of analyticity of its transfer function, can be stabilized with a stable strictly proper lumped compensator if and only if the standard parity interlacing condition is satisfied. The problem is formulated and solved in a Banach algebra of transfer functions that are Laplace transforms of measures having a finite total variation with respect to some given submultiplicative weight function. In particular, this result can be applied to transfer functions in the Callier-Desoer class, and it seems to be new even for this class. The proofs are closely related to and based on the scalar case solved previously.
In this paper, for an axially moving system, with the purpose of suppressing vibration, an adaptive fault-tolerant control method with time-varying constraints is investigated. The dynamics of the system are comprised...
详细信息
In this paper, for an axially moving system, with the purpose of suppressing vibration, an adaptive fault-tolerant control method with time-varying constraints is investigated. The dynamics of the system are comprised of an ordinary differential equation coupled with a partial differential equation. The method used in our study is known as fault-tolerant control to process affairs of actuator failures occur. Actual control substitutes for ideal control to regulate the vibration when the actuator occurs undesired failures. Time-varying constraints are appropriate to cope with the variation range of the performance. Lyapunov function has proven that the adaptive control law is feasible, as well as verifying the exponential stability of the system. Eventually, simulations we have done suggest that the effectiveness of the designed control is feasible.
暂无评论