咨询与建议

限定检索结果

文献类型

  • 10 篇 会议
  • 6 篇 期刊文献

馆藏范围

  • 16 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12 篇 工学
    • 6 篇 计算机科学与技术...
    • 4 篇 电气工程
    • 4 篇 软件工程
    • 3 篇 信息与通信工程
    • 2 篇 控制科学与工程
  • 4 篇 理学
    • 2 篇 数学
    • 2 篇 统计学(可授理学、...
    • 1 篇 物理学
    • 1 篇 生物学
  • 2 篇 医学
    • 2 篇 公共卫生与预防医...
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 16 篇 distributed regr...
  • 3 篇 wireless sensor ...
  • 2 篇 distributed opti...
  • 2 篇 precision medici...
  • 2 篇 binary subspace
  • 2 篇 diffusion adapta...
  • 2 篇 parallel computa...
  • 2 篇 steepest descent
  • 2 篇 mapreduce
  • 2 篇 relative entropy
  • 2 篇 cross media
  • 2 篇 kullback-leibler...
  • 2 篇 data collection
  • 2 篇 distributed clas...
  • 1 篇 gaussian process...
  • 1 篇 selective seroto...
  • 1 篇 likelihood funct...
  • 1 篇 ensemble learnin...
  • 1 篇 multi-centre stu...
  • 1 篇 inference noise

机构

  • 2 篇 mcgill univ dept...
  • 2 篇 zhejiang univ de...
  • 1 篇 univ illinois in...
  • 1 篇 tarbiat modares ...
  • 1 篇 zhejiang univ co...
  • 1 篇 jewish gen hosp ...
  • 1 篇 kaiser permanent...
  • 1 篇 univ illinois de...
  • 1 篇 harvard pilgrim ...
  • 1 篇 kth royal inst t...
  • 1 篇 mcgill univ dept...
  • 1 篇 simon fraser uni...
  • 1 篇 duke clin & tran...
  • 1 篇 mcgill univ mcgi...
  • 1 篇 univ padua dept ...
  • 1 篇 univ washington ...
  • 1 篇 univ pittsburgh ...
  • 1 篇 univ calif los a...
  • 1 篇 suny binghamton ...
  • 1 篇 univ bremen dept...

作者

  • 2 篇 danieli coraline
  • 2 篇 zhang zhongfei
  • 2 篇 moodie erica e. ...
  • 2 篇 zhang chenyi
  • 2 篇 zhao xueyi
  • 1 篇 mctigue kathleen
  • 1 篇 coleman karen j.
  • 1 篇 schenato luca
  • 1 篇 pillonetto gianl...
  • 1 篇 avanesov valeriy
  • 1 篇 dekorsy armin
  • 1 篇 wang guoli
  • 1 篇 ram s. sundhar
  • 1 篇 ben-hur yuval
  • 1 篇 xuemei guo
  • 1 篇 renoux christel
  • 1 篇 nedic a.
  • 1 篇 paul henning
  • 1 篇 hou chaojun
  • 1 篇 cohen israel

语言

  • 16 篇 英文
检索条件"主题词=distributed regression"
16 条 记 录,以下是1-10 订阅
排序:
In-cluster vector evaluated particle swarm optimization for distributed regression in WSNs
收藏 引用
JOURNAL OF NETWORK AND COMPUTER APPLICATIONS 2014年 第Jun.期42卷 80-91页
作者: Shakibian, Hadi Charkari, Nasrollah Moghadam Tarbiat Modares Univ Fac Elect & Comp Engn Parallel Proc Lab 6 51 Tehran Iran
Conventional methods address data modeling in WSNs by converting a learning problem into an optimization task. These methods are mainly based on Gradient Descent and Nelder-Mead Simplex optimization techniques. They a... 详细信息
来源: 评论
Combining distributed regression and propensity scores: a doubly privacy-protecting analytic method for multicenter research
收藏 引用
CLINICAL EPIDEMIOLOGY 2018年 10卷 1773-1786页
作者: Toh, Sengwee Wellman, Robert Coley, R. Yates Horgan, Casie Sturtevant, Jessica Moyneur, Erick Janning, Cheri Pardee, Roy Coleman, Karen J. Arterburn, David McTigue, Kathleen Anau, Jane Cook, Andrea J. Harvard Med Sch Dept Populat Med 401 Pk DrSuite 401 East Boston MA 02215 USA Harvard Pilgrim Hlth Care Inst 401 Pk DrSuite 401 East Boston MA 02215 USA Kaiser Permanente Washington Hlth Res Inst Seattle WA USA StatLog Econometr Inc Montreal PQ Canada Duke Clin & Translat Sci Inst Durham NC USA Kaiser Permanente Southern Calif Pasadena CA USA Univ Pittsburgh Dept Med Pittsburgh PA USA
Purpose: Sharing of detailed individual-level data continues to pose challenges in multicenter studies. This issue can be addressed in part by using analytic methods that require only summary-level information to perf... 详细信息
来源: 评论
Steepest Descent based Optimization for distributed regression in Wireless Sensor Networks
Steepest Descent based Optimization for Distributed Regressi...
收藏 引用
4th International Conference on Wireless Communications, Networking and Mobile Computing
作者: Hou, Chaojun Guo, Xuemei Wang, Guoli Sun Yat Sen Univ Sch Informat Sci & Technol Guangzhou 510275 Guangdong Peoples R China
This paper presents a steepest descent based algorithm for the distributed optimization towards to data regression modeling in wireless sensor networks(WSNs). In doing this, the junction tree based routing structure i... 详细信息
来源: 评论
Steepest Descent based Optimization for distributed regression in Wireless Sensor Networks
Steepest Descent based Optimization for Distributed Regressi...
收藏 引用
The 4th International Conference on Wireless Communications, Networking and Mobile Computing(第四届IEEE无线通信、网络技术及移动计算国际会议)
作者: Chaojun Hou Xuemei Guo Guoli Wang School of Information Science & Technology Sun Yat-Sen University Guangzhou 510275 China PR
This paper presents a steepest descent based algorithm for the distributed optimization towards to data regression modeling in wireless sensor networks(WSNs). In doing this, the junction tree based routing structure i... 详细信息
来源: 评论
Auto-tuning procedures for distributed nonparametric regression algorithms
Auto-tuning procedures for distributed nonparametric regress...
收藏 引用
European Control Conference (ECC)
作者: Varagnolo, Damiano Pillonetto, Gianluigi Schenato, Luca Lulea Univ Technol Dept Comp Sci Elect & Space Engn Lulea Sweden Univ Padua Dept Informat Engn I-35100 Padua Italy
We propose a distributed regression algorithm with the capability of automatically calibrating its parameters during its on-line functioning. The estimation procedure corresponds to a Regularization Network, i.e., the... 详细信息
来源: 评论
Data-driven confidence bands for distributed nonparametric regression  33
Data-driven confidence bands for distributed nonparametric r...
收藏 引用
33rd Conference on Learning Theory (COLT)
作者: Avanesov, Valeriy WIAS Berlin Berlin Germany
Gaussian Process regression and Kernel Ridge regression are popular nonparametric regression approaches. Unfortunately, they suffer from high computational complexity rendering them inapplicable to the modern massive ... 详细信息
来源: 评论
distributed Nonlinear regression Using In-Network Processing With Multiple Gaussian Kernels  18
Distributed Nonlinear Regression Using In-Network Processing...
收藏 引用
18th IEEE International Workshop on Signal Processing Advances for Wireless Communications (SPAWC)
作者: Shin, Ban-Sok Paul, Henning Yukawa, Masahiro Dekorsy, Armin Univ Bremen Dept Commun Engn Bremen Germany Keio Univ Dept Elect & Elect Engn Tokyo Japan
In this paper, we propose the use of multiple Gaussian kernels for distributed nonlinear regression or system identification tasks by a network of nodes. By employing multiple kernels in the estimation process we incr... 详细信息
来源: 评论
A new class of distributed optimization algorithms: application to regression of distributed data
收藏 引用
OPTIMIZATION METHODS & SOFTWARE 2012年 第1期27卷 71-88页
作者: Ram, S. Sundhar Nedic, A. Veeravalli, V. V. Univ Illinois Ind & Enterprise Syst Engn Dept Urbana IL 61801 USA Univ Illinois Dept Elect & Comp Engn Urbana IL 61801 USA
In a distributed optimization problem, the complete problem information is not available at a single location but is rather distributed among different agents in a multi-agent system. In the problems studied in the li... 详细信息
来源: 评论
distributed INFERENCE OVER regression AND CLASSIFICATION MODELS
DISTRIBUTED INFERENCE OVER REGRESSION AND CLASSIFICATION MOD...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Towfic, Zaid J. Chen, Jianshu Sayed, Ali H. Univ Calif Los Angeles Dept Elect Engn Los Angeles CA 90024 USA
We study the distributed inference task over regression and classification models where the likelihood function is strongly log-concave. We show that diffusion strategies allow the KL divergence between two likelihood... 详细信息
来源: 评论
distributed INFERENCE OVER regression AND CLASSIFICATION MODELS
DISTRIBUTED INFERENCE OVER REGRESSION AND CLASSIFICATION MOD...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: Zaid J. Towfic Jianshu Chen Ali H. Sayed Electrical Engineering Department University of California Los Angeles
We study the distributed inference task over regression and classification models where the likelihood function is strongly log-concave. We show that diffusion strategies allow the KL divergence between two likelihood... 详细信息
来源: 评论