咨询与建议

限定检索结果

文献类型

  • 10 篇 会议
  • 6 篇 期刊文献

馆藏范围

  • 16 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12 篇 工学
    • 6 篇 计算机科学与技术...
    • 4 篇 电气工程
    • 4 篇 软件工程
    • 3 篇 信息与通信工程
    • 2 篇 控制科学与工程
  • 4 篇 理学
    • 2 篇 数学
    • 2 篇 统计学(可授理学、...
    • 1 篇 物理学
    • 1 篇 生物学
  • 2 篇 医学
    • 2 篇 公共卫生与预防医...
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 16 篇 distributed regr...
  • 3 篇 wireless sensor ...
  • 2 篇 distributed opti...
  • 2 篇 precision medici...
  • 2 篇 binary subspace
  • 2 篇 diffusion adapta...
  • 2 篇 parallel computa...
  • 2 篇 steepest descent
  • 2 篇 mapreduce
  • 2 篇 relative entropy
  • 2 篇 cross media
  • 2 篇 kullback-leibler...
  • 2 篇 data collection
  • 2 篇 distributed clas...
  • 1 篇 gaussian process...
  • 1 篇 selective seroto...
  • 1 篇 likelihood funct...
  • 1 篇 ensemble learnin...
  • 1 篇 multi-centre stu...
  • 1 篇 inference noise

机构

  • 2 篇 mcgill univ dept...
  • 2 篇 zhejiang univ de...
  • 1 篇 univ illinois in...
  • 1 篇 tarbiat modares ...
  • 1 篇 zhejiang univ co...
  • 1 篇 jewish gen hosp ...
  • 1 篇 kaiser permanent...
  • 1 篇 univ illinois de...
  • 1 篇 harvard pilgrim ...
  • 1 篇 kth royal inst t...
  • 1 篇 mcgill univ dept...
  • 1 篇 simon fraser uni...
  • 1 篇 duke clin & tran...
  • 1 篇 mcgill univ mcgi...
  • 1 篇 univ padua dept ...
  • 1 篇 univ washington ...
  • 1 篇 univ pittsburgh ...
  • 1 篇 univ calif los a...
  • 1 篇 suny binghamton ...
  • 1 篇 univ bremen dept...

作者

  • 2 篇 danieli coraline
  • 2 篇 zhang zhongfei
  • 2 篇 moodie erica e. ...
  • 2 篇 zhang chenyi
  • 2 篇 zhao xueyi
  • 1 篇 mctigue kathleen
  • 1 篇 coleman karen j.
  • 1 篇 schenato luca
  • 1 篇 pillonetto gianl...
  • 1 篇 avanesov valeriy
  • 1 篇 dekorsy armin
  • 1 篇 wang guoli
  • 1 篇 ram s. sundhar
  • 1 篇 ben-hur yuval
  • 1 篇 xuemei guo
  • 1 篇 renoux christel
  • 1 篇 nedic a.
  • 1 篇 paul henning
  • 1 篇 hou chaojun
  • 1 篇 cohen israel

语言

  • 16 篇 英文
检索条件"主题词=distributed regression"
16 条 记 录,以下是1-10 订阅
排序:
Data-driven confidence bands for distributed nonparametric regression  33
Data-driven confidence bands for distributed nonparametric r...
收藏 引用
33rd Conference on Learning Theory (COLT)
作者: Avanesov, Valeriy WIAS Berlin Berlin Germany
Gaussian Process regression and Kernel Ridge regression are popular nonparametric regression approaches. Unfortunately, they suffer from high computational complexity rendering them inapplicable to the modern massive ... 详细信息
来源: 评论
Combining distributed regression and propensity scores: a doubly privacy-protecting analytic method for multicenter research
收藏 引用
CLINICAL EPIDEMIOLOGY 2018年 10卷 1773-1786页
作者: Toh, Sengwee Wellman, Robert Coley, R. Yates Horgan, Casie Sturtevant, Jessica Moyneur, Erick Janning, Cheri Pardee, Roy Coleman, Karen J. Arterburn, David McTigue, Kathleen Anau, Jane Cook, Andrea J. Harvard Med Sch Dept Populat Med 401 Pk DrSuite 401 East Boston MA 02215 USA Harvard Pilgrim Hlth Care Inst 401 Pk DrSuite 401 East Boston MA 02215 USA Kaiser Permanente Washington Hlth Res Inst Seattle WA USA StatLog Econometr Inc Montreal PQ Canada Duke Clin & Translat Sci Inst Durham NC USA Kaiser Permanente Southern Calif Pasadena CA USA Univ Pittsburgh Dept Med Pittsburgh PA USA
Purpose: Sharing of detailed individual-level data continues to pose challenges in multicenter studies. This issue can be addressed in part by using analytic methods that require only summary-level information to perf... 详细信息
来源: 评论
distributed Nonlinear regression Using In-Network Processing With Multiple Gaussian Kernels  18
Distributed Nonlinear Regression Using In-Network Processing...
收藏 引用
18th IEEE International Workshop on Signal Processing Advances for Wireless Communications (SPAWC)
作者: Shin, Ban-Sok Paul, Henning Yukawa, Masahiro Dekorsy, Armin Univ Bremen Dept Commun Engn Bremen Germany Keio Univ Dept Elect & Elect Engn Tokyo Japan
In this paper, we propose the use of multiple Gaussian kernels for distributed nonlinear regression or system identification tasks by a network of nodes. By employing multiple kernels in the estimation process we incr... 详细信息
来源: 评论
In-cluster vector evaluated particle swarm optimization for distributed regression in WSNs
收藏 引用
JOURNAL OF NETWORK AND COMPUTER APPLICATIONS 2014年 第Jun.期42卷 80-91页
作者: Shakibian, Hadi Charkari, Nasrollah Moghadam Tarbiat Modares Univ Fac Elect & Comp Engn Parallel Proc Lab 6 51 Tehran Iran
Conventional methods address data modeling in WSNs by converting a learning problem into an optimization task. These methods are mainly based on Gradient Descent and Nelder-Mead Simplex optimization techniques. They a... 详细信息
来源: 评论
Auto-tuning procedures for distributed nonparametric regression algorithms
Auto-tuning procedures for distributed nonparametric regress...
收藏 引用
European Control Conference (ECC)
作者: Varagnolo, Damiano Pillonetto, Gianluigi Schenato, Luca Lulea Univ Technol Dept Comp Sci Elect & Space Engn Lulea Sweden Univ Padua Dept Informat Engn I-35100 Padua Italy
We propose a distributed regression algorithm with the capability of automatically calibrating its parameters during its on-line functioning. The estimation procedure corresponds to a Regularization Network, i.e., the... 详细信息
来源: 评论
A Multi-Modal distributed Learning Algorithm in Reproducing Kernel Hilbert Spaces  6
A Multi-Modal Distributed Learning Algorithm in Reproducing ...
收藏 引用
6th Annual Learning for Dynamics and Control Conference
作者: Raghavan, Aneesh Johansson, Karl Henrik KTH Royal Inst Technol DCS Div Stockholm Sweden
We consider the problem of function estimation by a multi-agent system consisting of two agents and a fusion center. Each agent receives data comprising of samples of an independent variable (input) and the correspond... 详细信息
来源: 评论
Privacy-preserving estimation of an optimal individualized treatment rule: a case study in maximizing time to severe depression-related outcomes
收藏 引用
LIFETIME DATA ANALYSIS 2022年 第3期28卷 512-542页
作者: Moodie, Erica E. M. Coulombe, Janie Danieli, Coraline Renoux, Christel Shortreed, Susan M. McGill Univ Dept Epidemiol Biostat & Occupat Hlth Montreal PQ Canada Jewish Gen Hosp Ctr Clin Epidemiol Lady Davis Inst Med Res Montreal PQ Canada McGill Univ Dept Neurol & Neurosurg Montreal PQ Canada Kaiser Permanente Washington Hlth Res Inst Biostat Unit Seattle WA USA Univ Washington Biostat Dept Seattle WA 98195 USA
Estimating individualized treatment rules-particularly in the context of right-censored outcomes-is challenging because the treatment effect heterogeneity of interest is often small, thus difficult to detect. While th... 详细信息
来源: 评论
Preserving data privacy when using multi-site data to estimate individualized treatment rules
收藏 引用
STATISTICS IN MEDICINE 2022年 第9期41卷 1627-1643页
作者: Danieli, Coraline Moodie, Erica E. M. McGill Univ McGill Univ Hlth Ctr Res Inst Dept Epidemiol Biostat & Occupat Hlth Montreal PQ Canada McGill Univ Dept Epidemiol Biostat & Occupat Hlth Montreal PQ Canada
Precision medicine is a rapidly expanding area of health research wherein patient level information is used to inform treatment decisions. A statistical framework helps to formalize the individualization of treatment ... 详细信息
来源: 评论
regression WITH AN ENSEMBLE OF NOISY BASE FUNCTIONS  32
REGRESSION WITH AN ENSEMBLE OF NOISY BASE FUNCTIONS
收藏 引用
IEEE 32nd International Workshop on Machine Learning for Signal Processing (MLSP)
作者: Ben-Hur, Yuval Cassuto, Yuval Cohen, Israel Technion Israel Inst Technol Viterbi Dept Elect & Comp Engn IL-3200003 Haifa Israel
Ensemble methods achieve state-of-the-art performance in many real-world regression problems while enjoying structural compatibility for modern decentralized computing architectures. However, the implementation of ens... 详细信息
来源: 评论
distributed cross-media multiple binary subspace learning
收藏 引用
INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL 2015年 第2期4卷 153-164页
作者: Zhao, Xueyi Zhang, Chenyi Zhang, Zhongfei Zhejiang Univ Dept Informat Sci & Elect Engn Hangzhou 310003 Zhejiang Peoples R China Simon Fraser Univ Sch Comp Sci Vancouver BC Canada SUNY Binghamton Dept Comp Sci Watson Sch Binghamton NY USA
Due to the ubiquitous existence of large-scale data in today's real-world applications, including learning on cross-media data, we propose a semi-supervised learning method, named Multiple Binary Subspace Regressi... 详细信息
来源: 评论