Although there has been a growing interest on cooperative diversity, the current literature is mainly limited to the results obtained for Rayleigh, Rician, or Nakagami fading channels. In this paper, we investigate th...
详细信息
Although there has been a growing interest on cooperative diversity, the current literature is mainly limited to the results obtained for Rayleigh, Rician, or Nakagami fading channels. In this paper, we investigate the performance of cooperative diversity schemes over log-normal fading channels which provide an accurate channel model for indoor wireless environments. We focus on single-relay cooperative networks with amplify-and-forward relaying and consider three TDMA-based cooperation protocols which correspond to distributed implementations of MIMO (multi-input multi-output), SIMO (single-input multi-output), and MISO (multi-input single-output) schemes. For each protocol under consideration, we derive upper bounds on pairwise error probability over log-normal channels and quantify the diversity advantages. Based on the minimization of a union bound on the bit error rate performance, we further formulate optimal power allocation schemes which demonstrate significant performance gains over their counterparts with equal power allocation.
Although there has been a growing interest on cooperative diversity, the current literature is mainly limited to the results obtained for Rayleigh, Rician, or Nakagami fading channels. In this paper, we investigate th...
详细信息
Although there has been a growing interest on cooperative diversity, the current literature is mainly limited to the results obtained for Rayleigh, Rician, or Nakagami fading channels. In this paper, we investigate the performance of cooperative diversity schemes over log-normal fading channels which provide an accurate channel model for indoor wireless environments. We focus on single-relay cooperative networks with amplify-and-forward relaying and consider three TDMA-based cooperation protocols which correspond to distributed implementations of MIMO (multi-input multi-output), SIMO (single-input multi-output), and MISO (multi-input single-output) schemes. For each protocol under consideration, we derive upper bounds on pairwise error probability over log-normal channels and quantify the diversity advantages. Based on the minimization of a union bound on the bit error rate performance, we further formulate optimal power allocation schemes which demonstrate significant performance gains over their counterparts with equal power allocation.
暂无评论