咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 仪器科学与技术
    • 1 篇 电气工程
    • 1 篇 控制科学与工程

主题

  • 1 篇 deep learning
  • 1 篇 learning rate
  • 1 篇 dynamic regret
  • 1 篇 convex programmi...
  • 1 篇 distributed onli...
  • 1 篇 subgradient opti...
  • 1 篇 gradient informa...
  • 1 篇 deep learning (a...
  • 1 篇 competing distri...
  • 1 篇 possesses dynami...
  • 1 篇 gradient methods
  • 1 篇 rate clipping
  • 1 篇 optimisation
  • 1 篇 adaptive online ...
  • 1 篇 time-varying net...
  • 1 篇 adaptive online ...
  • 1 篇 learning (artifi...
  • 1 篇 distributed vers...
  • 1 篇 called dadaxboun...

机构

  • 1 篇 anhui univ sci &...
  • 1 篇 anhui univ sci &...
  • 1 篇 southeast univ s...

作者

  • 1 篇 li dequan
  • 1 篇 shen xiuyu
  • 1 篇 fang runyue

语言

  • 1 篇 英文
检索条件"主题词=distributed versions"
1 条 记 录,以下是1-10 订阅
排序:
distributed online adaptive subgradient optimization with dynamic bound of learning rate over time-varying networks
收藏 引用
IET CONTROL THEORY AND APPLICATIONS 2022年 第18期16卷 1834-1846页
作者: Fang, Runyue Li, Dequan Shen, Xiuyu Anhui Univ Sci & Technol Sch Math & Big Data Huaina Peoples R China Anhui Univ Sci & Technol Sch Artificial Intelligence Huainan 232000 Peoples R China Southeast Univ Sch Transportat Nanjing Peoples R China
Adaptive online optimization algorithms, such as Adam, RMSprop, and AdaBound, have recently been tremendously popular as they have been widely applied to address the issues in the field of deep learning. Despite their... 详细信息
来源: 评论