Although global sensitivity analysis (GSA) is gaining increasing popularity in power systems due to its ability to measure the importance of uncertain inputs, it has not been explored in the integrated energy system (...
详细信息
Although global sensitivity analysis (GSA) is gaining increasing popularity in power systems due to its ability to measure the importance of uncertain inputs, it has not been explored in the integrated energy system (IES) in the existing literature. Indeed, when coupled multi-energy systems (e.g., heating networks) are considered, the power system operation states are inevitably altered. Accordingly, its associated GSA, which relies on Monte Carlo simulations (MCS), becomes even more computationally prohibitive since it not only increases the model complexity but also faces large uncertainties. To address these issues, this paper proposes a double-loop generalized unscented transform (GenUT)-based strategy that, for the first time, explores the GSA in the IES while simultaneously achieving high computing efficiency and accuracy. More specifically, we first propose a GenUT method that can propagate the moment information of correlated input variables following different types of probability distributions in the IES. We further design a double-loop sampling scheme for GenUT to evaluate the GSA for correlated uncertainties in a cost-effective manner. The simulations of multiple heat- and power-coupled IESs reveal the excellent performance of the proposed method.
The increased penetration of intermittent renewable energy sources and random loads has caused many uncertainties in the power system. It is essential to analyze the effect of these uncertain factors on the behavior o...
详细信息
The increased penetration of intermittent renewable energy sources and random loads has caused many uncertainties in the power system. It is essential to analyze the effect of these uncertain factors on the behavior of the power system. This study presents a new powerful approach called probability-boxes (p-boxes) to consider these uncertainties by combining interval and probability simultaneously. The proposed method is appropriate for problems with insufficient information. In this paper, the uncertainty in distribution functions is modeled according to the influence of natural factors such as light intensity and wind speed. First, the p-boxes load flow problem is studied using an appropriate point estimation method to calculate statistical moments of probabilistic load flow (PLF) outputs. Then, the Cornish-Fisher expansion series is used to obtain the probability bounds. The proposed approach is analyzed on the IEEE 14-bus, and IEEE 118-bus test systems consist of loads, solar farms, and wind farms as p-boxes input variables. The obtained results are compared with the double-loop sampling (DLS) approach to show the proposed method's precision and efficiency.
暂无评论