咨询与建议

限定检索结果

文献类型

  • 74 篇 期刊文献
  • 13 篇 会议

馆藏范围

  • 87 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 85 篇 工学
    • 76 篇 计算机科学与技术...
    • 36 篇 电气工程
    • 17 篇 控制科学与工程
    • 2 篇 仪器科学与技术
    • 2 篇 信息与通信工程
    • 2 篇 船舶与海洋工程
    • 2 篇 软件工程
    • 1 篇 土木工程
    • 1 篇 环境科学与工程(可...
  • 13 篇 管理学
    • 13 篇 管理科学与工程(可...
  • 8 篇 理学
    • 4 篇 生物学
    • 2 篇 数学
    • 2 篇 海洋科学

主题

  • 87 篇 dynamic multiobj...
  • 20 篇 evolutionary alg...
  • 17 篇 prediction
  • 16 篇 optimization
  • 14 篇 sociology
  • 11 篇 statistics
  • 11 篇 heuristic algori...
  • 9 篇 evolutionary alg...
  • 7 篇 transfer learnin...
  • 7 篇 convergence
  • 7 篇 evolutionary com...
  • 6 篇 prediction algor...
  • 5 篇 predictive model...
  • 5 篇 change detection
  • 4 篇 optical fibers
  • 4 篇 knowledge transf...
  • 3 篇 maintenance engi...
  • 3 篇 inverse model
  • 3 篇 evolutionary alg...
  • 3 篇 manifolds

机构

  • 5 篇 china univ min &...
  • 5 篇 qingdao univ sci...
  • 4 篇 hong kong polyte...
  • 4 篇 natl univ singap...
  • 4 篇 northeastern uni...
  • 4 篇 city univ hong k...
  • 4 篇 xiamen univ sch ...
  • 4 篇 de montfort univ...
  • 4 篇 xiamen univ dept...
  • 3 篇 beijing univ tec...
  • 3 篇 michigan state u...
  • 3 篇 oklahoma state u...
  • 3 篇 zhengzhou univ s...
  • 3 篇 xiamen univ fuji...
  • 3 篇 univ surrey dept...
  • 3 篇 yanshan univ min...
  • 3 篇 ocean univ china...
  • 3 篇 tangshan univ de...
  • 3 篇 shenzhen univ co...
  • 2 篇 univ surrey dept...

作者

  • 11 篇 yang shengxiang
  • 10 篇 tan kay chen
  • 9 篇 jiang min
  • 7 篇 gong dunwei
  • 6 篇 jin yaochu
  • 6 篇 zheng jinhua
  • 5 篇 zou juan
  • 5 篇 sun hao
  • 4 篇 ding jinliang
  • 4 篇 cao anran
  • 4 篇 liang jing
  • 4 篇 hu ziyu
  • 3 篇 xu lihong
  • 3 篇 li xiaoli
  • 3 篇 pedrycz witold
  • 3 篇 guo yinan
  • 3 篇 liu ruochen
  • 3 篇 jiao licheng
  • 3 篇 qu boyang
  • 3 篇 chai tianyou

语言

  • 86 篇 英文
  • 1 篇 其他
检索条件"主题词=dynamic multiobjective optimization"
87 条 记 录,以下是11-20 订阅
排序:
A multipopulation evolutionary framework with Steffensen's method for dynamic multiobjective optimization problems
收藏 引用
MEMETIC COMPUTING 2021年 第4期13卷 477-495页
作者: Liu, Tianyu Cao, Lei Wang, Zhu Shanghai Maritime Univ Sch Informat Engn Shanghai Peoples R China Shanghai Maritime Univ Sch Logist Engn Shanghai Peoples R China
dynamic multiobjective optimization problems (DMOPs) require the evolutionary algorithms that can track the moving Pareto-optimal fronts efficiently. This paper presents a dynamic multiobjective evolutionary framework... 详细信息
来源: 评论
A Framework Based on Historical Evolution Learning for dynamic multiobjective optimization
收藏 引用
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2024年 第4期28卷 1127-1140页
作者: Yu, Kunjie Zhang, Dezheng Liang, Jing Qu, Boyang Liu, Mengnan Chen, Ke Yue, Caitong Wang, Ling Zhengzhou Univ Sch Elect & Informat Engn Zhengzhou 450001 Peoples R China Henan Inst Technol Sch Elect Engn & Automat Xinxiang 453003 Peoples R China Zhongyuan Univ Technol Sch Elect & Informat Zhengzhou 450007 Peoples R China Chassis Transmiss Technol Inst State Key Lab Intelligent Agr Power Equipment Luoyang 471000 Peoples R China Tsinghua Univ Dept Automat Beijing 100084 Peoples R China
dynamic multiobjective optimization problems (DMOPs) are widely encountered in real-world applications and have received considerable attention in recent years. During the process of solving DMOPs, tracking the consta... 详细信息
来源: 评论
Evolutionary dynamic multiobjective optimization Assisted by a Support Vector Regression Predictor
收藏 引用
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2020年 第2期24卷 305-319页
作者: Cao, Leilei Xu, Lihong Goodman, Erik D. Bao, Chunteng Zhu, Shuwei Tongji Univ Dept Control Sci & Engn Shanghai 201804 Peoples R China Michigan State Univ BEACON Ctr Study Evolut Act E Lansing MI 48824 USA
dynamic multiobjective optimization problems (DMOPs) challenge multiobjective evolutionary algorithms (MOEAs) because those problems change rapidly over time. The class of DMOPs whose objective functions change over t... 详细信息
来源: 评论
A prediction strategy based on special points and multiregion knee points for evolutionary dynamic multiobjective optimization
收藏 引用
APPLIED INTELLIGENCE 2020年 第12期50卷 4357-4377页
作者: Wei, Lixin Guo, Zeyin Fan, Rui Sun, Hao Zhao, Zhiwei Yanshan Univ Inst Elect Engn Qinhuangdao 066004 Hebei Peoples R China Yanshan Univ Minist Educ Intelligent Control Syst & Intelligen Engn Res Ctr Qinhuangdao 066004 Hebei Peoples R China Tangshan Univ Dept Comp Sci & Technol Tangshan 063000 Hebei Peoples R China
dynamic multiobjective optimization problems exist widely in the real word and require the optimization algorithms to track the Pareto front (PF) over time. A prediction strategy based on special points and multi-regi... 详细信息
来源: 评论
A prediction method based on fractional order displacement for dynamic multiobjective optimization
收藏 引用
ISA TRANSACTIONS 2022年 130卷 163-176页
作者: Li, Guoping Liu, Yanmin Deng, Xicai Guizhou Univ Sch Math & Stat Guiyang 550025 Guizhou Peoples R China Hunan Inst Technol Sch Sci Hengyang 421002 Hunan Peoples R China Zunyi Normal Univ Sch Math Zunyi 563006 Guizhou Peoples R China Guizhou Normal Coll Dept Math & Comp Guiyang 550018 Guizhou Peoples R China
Prediction-based methods have become more popular for solving dynamic multiobjective optimization problems. However, most of these proposed methods only use the optimal solutions in the previous two or three environme... 详细信息
来源: 评论
Transfer Learning-Based dynamic multiobjective optimization Algorithms
收藏 引用
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2018年 第4期22卷 501-514页
作者: Jiang, Min Huang, Zhongqiang Qiu, Liming Huang, Wenzhen Yen, Gary G. Xiamen Univ Dept Cognit Sci & Technol Xiamen 361005 Peoples R China Xiamen Univ Fujian Key Lab Machine Intelligence & Robot Xiamen 361005 Peoples R China Oklahoma State Univ Sch Elect & Comp Engn Stillwater OK 74078 USA Sangfor Technol Inst Innovat Res Shenzhen 518071 Peoples R China Chinese Acad Sci Inst Automat Beijing 100190 Peoples R China
One of the major distinguishing features of the dynamic multiobjective optimization problems (DMOPs) is that optimization objectives will change over time, thus tracking the varying Pareto-optimal front becomes a chal... 详细信息
来源: 评论
Novel Prediction Strategies for dynamic multiobjective optimization
收藏 引用
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2020年 第2期24卷 260-274页
作者: Zhang, Qingyang Yang, Shengxiang Jiang, Shouyong Wang, Ronggui Li, Xiaoli Jiangsu Normal Univ Sch Comp Sci & Technol Xuzhou Jiangsu Peoples R China De Montfort Univ Sch Comp Sci & Informat Leicester LE1 9BH Leics England Southern Univ Sci & Technol Dept Comp Sci & Engn Shenzhen 518055 Peoples R China Univ Lincoln Sch Comp Sci Lincoln LN6 7TS England Hefei Univ Technol Sch Comp & Informat Hefei 230009 Peoples R China Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China
This paper proposes a new prediction-based dynamic multiobjective optimization (PBDMO) method, which combines a new prediction-based reaction mechanism and a popular regularity model-based multiobjective estimation of... 详细信息
来源: 评论
Learning to Guide Particle Search for dynamic multiobjective optimization
收藏 引用
IEEE TRANSACTIONS ON CYBERNETICS 2024年 第9期54卷 5529-5542页
作者: Song, Wei Liu, Shaocong Wang, Xinjie Guo, Yinan Yang, Shengxiang Jin, Yaochu Jiangnan Univ Sch Artificial Intelligence & Comp Sci Jiangsu Prov Engn Lab Pattern Recognit & Computat Wuxi 214122 Peoples R China East China Univ Sci & Technol Key Lab Smart Mfg Energy Chem Proc Minist Educ Shanghai 200237 Peoples R China China Univ Min & Technol Sch Informat & Control Engn Xuzhou 221116 Peoples R China De Montfort Univ Inst Artificial Intelligence Sch Comp Sci & Informat Leicester LE1 9BH England Westlake Univ Sch Engn Trustworth & Gen Artificial Intelligence Lab Hangzhou 331712 Peoples R China
dynamic multiobjective optimization problems (DMOPs) are characterized by multiple objectives that change over time in varying environments. More specifically, environmental changes can be described as various dynamic... 详细信息
来源: 评论
A domain adaptation learning strategy for dynamic multiobjective optimization
收藏 引用
INFORMATION SCIENCES 2022年 606卷 328-349页
作者: Chen, Guoyu Guo, Yinan Huang, Mingyi Gong, Dunwei Yu, Zekuan China Univ Min & Technol Sch Informat & Control Engn Xuzhou 221116 Jiangsu Peoples R China China Univ Min & Technol Beijing Sch Mech Elect & Informat Engn Beijing 100083 Peoples R China Fudan Univ Acad Engn & Technol Shanghai 200433 Peoples R China Fudan Univ Huashan Hosp Ctr Shanghai Intelligent Imaging Crit Brain Dis E Shanghai 200040 Peoples R China
dynamic multiobjective optimization problems (DMOPs) require the robust tracking of Pareto-optima varying over time. Previous transfer learning-based problem solvers consume the most time on complex training of transf... 详细信息
来源: 评论
Domain Generalization-Based dynamic multiobjective optimization: A Case Study on Disassembly Line Balancing
收藏 引用
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2023年 第6期27卷 1851-1865页
作者: Fang, Yilin Liu, Fubo Li, Miqing Cui, Hao Wuhan Univ Technol Sch Informat Engn Wuhan 430070 Peoples R China Univ Birmingham Sch Comp Sci Birmingham B15 2TT England
The objective of disassembly lines is to disassemble end-of-life products in a remanufacturing field. The disassembly line balancing problem (DLBP) considers how to allocate disassembly operations to operators on the ... 详细信息
来源: 评论