As a deep algorithm of non-neural network structure, deep forest regression (DFR) can be used to build soft measuring models of difficult-to-measure key parameters. However, as a kind of deep learning, the optimizatio...
详细信息
ISBN:
(纸本)9781728176871
As a deep algorithm of non-neural network structure, deep forest regression (DFR) can be used to build soft measuring models of difficult-to-measure key parameters. However, as a kind of deep learning, the optimization of hyperparameters has become an inevitable problem in DFR. To solve above problem, an improved dynamic state transition algorithm (DSTA) is used to optimize the hyper-parameters of the model. To achieved more accurate optimization process, the error change rate is used to fine-tuning the state factor during the iteration process, which is further improved with gradient-based refinement. Finally, simulation experiments are performed on the benchmark data set, and satisfactory simulation results show the effectiveness of the proposed approach.
A fault detection method of wind turbine pitch system using semi-supervised optimal margin distribution machine (ssODM) optimized by dynamic state transition algorithm (DSTA) [ssODM-DSTA] was proposed to solve the pro...
详细信息
A fault detection method of wind turbine pitch system using semi-supervised optimal margin distribution machine (ssODM) optimized by dynamic state transition algorithm (DSTA) [ssODM-DSTA] was proposed to solve the problem of obtaining the optimal hyperparameters of the fault detection model for the pitch system. This method was adopted to input the three hyperparameters of the ssODM into the dynamic state transition algorithm in the form of a three-dimensional vector to obtain the global optimal hyperparameters of the model, thus improving the performance of the fault detection model. Using a random forest to rank the priority of features of the pitch system fault data, the features with large weight proportions were retained. Then, the Pearson correlation method is used to analyze the degree of correlation among features, filter redundant features, and reduce the scale of features. The dataset was divided into a training dataset and a test dataset to train and test the proposed fault detection model, respectively. The real-time wind turbine pitch system fault data were collected from domestic wind farms to carry out fault detection experiments. The results have shown that the proposed method had a positive fault rate (FPR) and fault negative rate (FNR), compared with other optimization algorithms.
暂无评论