咨询与建议

限定检索结果

文献类型

  • 1 篇 会议

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 理学
    • 1 篇 物理学
  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 计算机科学与技术...
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 1 篇 redundant data
  • 1 篇 deep neural netw...
  • 1 篇 federated learni...
  • 1 篇 edge-collaborati...

机构

  • 1 篇 northwestern pol...
  • 1 篇 xidian univ xian...

作者

  • 1 篇 guo bin
  • 1 篇 cui jiangtao
  • 1 篇 wang qianru
  • 1 篇 li qingyang

语言

  • 1 篇 英文
检索条件"主题词=edge-collaborative computing"
1 条 记 录,以下是1-10 订阅
排序:
EFFICIENT FEDERATED LEARNING WITH SMOOTH AGGREGATION FOR NON-IID DATA FROM MULTIPLE edgeS  49
EFFICIENT FEDERATED LEARNING WITH SMOOTH AGGREGATION FOR NON...
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Wang, Qianru Li, Qingyang Guo, Bin Cui, Jiangtao Xidian Univ Xian Shaanxi Peoples R China Northwestern Polytech Univ Xian Shaanxi Peoples R China
Federated learning (FL) learns an optimal global model by aggregating local models trained on distributed data from different devices. Due to heterogeneous data distributions across devices, local models will be diver... 详细信息
来源: 评论