The development of deep learning provides a new way for solving the colorization problem on the grayscaleimage. Excellent coding-basedmethods appear in the automaticimagecolorization task, avoiding the unsaturated...
详细信息
The development of deep learning provides a new way for solving the colorization problem on the grayscaleimage. Excellent coding-basedmethods appear in the automaticimagecolorization task, avoiding the unsaturated colour effect problem of previous methods based on the L2 loss function. Traditional neural networks come with high computational costs and a large number of parameters. Considering the limitation of memory and computing resources and aiming at lightweight, a novel grey imageautomaticcolorization network is proposed. The basic idea of coding-basedmethods is used, regarding the colorization task as a pixel-level classification problem, meanwhile redesign and improve the colour encoding and decoding process. This network architecture leverages a lightweight convolution to reduce the computation and combines an efficient attention model to form a residual block as the kernel of the backbone network. Furthermore, an efficientimage self-attention mechanism placed at the end of the network is applied to enhance the ultimate colouring results. The method proposed in this paper can maintain the natural colouring effect and significantly reduce the computational amount and network model parameters.
暂无评论