咨询与建议

限定检索结果

文献类型

  • 30 篇 期刊文献
  • 4 篇 会议

馆藏范围

  • 34 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 24 篇 工学
    • 10 篇 控制科学与工程
    • 9 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 4 篇 软件工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 信息与通信工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
  • 18 篇 理学
    • 18 篇 数学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 18 篇 管理学
    • 18 篇 管理科学与工程(可...
    • 1 篇 公共管理
  • 2 篇 经济学
    • 1 篇 理论经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 34 篇 ellipsoid algori...
  • 5 篇 linear programmi...
  • 4 篇 computational co...
  • 4 篇 nonlinear progra...
  • 3 篇 linear inequalit...
  • 3 篇 convex programmi...
  • 3 篇 lmi
  • 3 篇 convex optimizat...
  • 2 篇 cutting plane me...
  • 2 篇 computational ex...
  • 2 篇 interior-point m...
  • 2 篇 nonlinear optimi...
  • 2 篇 linear matrix in...
  • 2 篇 algorithm evalua...
  • 2 篇 ewma
  • 2 篇 equality constra...
  • 2 篇 tracking error
  • 2 篇 geometric progra...
  • 2 篇 robustness
  • 2 篇 portfolio select...

机构

  • 1 篇 cornell univ ith...
  • 1 篇 tel aviv univers...
  • 1 篇 hebrew univ jeru...
  • 1 篇 heinz nixdorf in...
  • 1 篇 politecn torino ...
  • 1 篇 department of co...
  • 1 篇 qingdao campus n...
  • 1 篇 bell laboratorie...
  • 1 篇 department of ma...
  • 1 篇 rensselaer polyt...
  • 1 篇 european institu...
  • 1 篇 nankai univ coll...
  • 1 篇 eecs mit
  • 1 篇 cornell univ sch...
  • 1 篇 rensselaer polyt...
  • 1 篇 univ waterloo de...
  • 1 篇 department of ma...
  • 1 篇 delft univ techn...
  • 1 篇 mit dept elect e...
  • 1 篇 korea adv inst s...

作者

  • 5 篇 kupferschmid m
  • 3 篇 ecker jg
  • 2 篇 jin chu-xin
  • 2 篇 chen wan-yi
  • 2 篇 freund robert m.
  • 2 篇 baang dane
  • 2 篇 yu shu-jing
  • 1 篇 kim s
  • 1 篇 yang cai
  • 1 篇 zhang s
  • 1 篇 recht p.
  • 1 篇 de sterck hans
  • 1 篇 todd mj
  • 1 篇 kanev s
  • 1 篇 goldfarb d
  • 1 篇 haim kaplan
  • 1 篇 calafiore giusep...
  • 1 篇 safonov mg
  • 1 篇 sanders geoffrey
  • 1 篇 miller killian

语言

  • 32 篇 英文
  • 2 篇 其他
检索条件"主题词=ellipsoid algorithm"
34 条 记 录,以下是1-10 订阅
An ellipsoid algorithm for probabilistic robust controller design
收藏 引用
SYSTEMS & CONTROL LETTERS 2003年 第5期49卷 365-375页
作者: Kanev, S De Schutter, B Verhaegen, M Univ Twente Fac Appl Phys Syst & Control Engn Grp NL-7500 AE Enschede Netherlands Delft Univ Technol Fac Informat Technol & Syst Control Syst Engn Grp NL-2600 GA Delft Netherlands
In this paper, a new iterative approach to probabilistic robust controller design is presented, which is applicable to any robust controller/filter design problem that can be represented as an LMI feasibility problem.... 详细信息
来源: 评论
A COMPUTATIONAL COMPARISON OF THE ellipsoid algorithm WITH SEVERAL NONLINEAR-PROGRAMMING algorithmS
收藏 引用
SIAM JOURNAL ON CONTROL AND OPTIMIZATION 1985年 第5期23卷 657-674页
作者: ECKER, JG KUPFERSCHMID, M RENSSELAER POLYTECH INST VOORHEES COMP CTRTROYNY 12181
A computational comparison of several general purpose nonlinear programming algorithms is presented. This study was motivated by the preliminary results in [12] which show that the recently developed ellipsoid algorit... 详细信息
来源: 评论
A probabilistic ellipsoid algorithm for linear optimization problems with uncertain LMI constraints
收藏 引用
AUTOMATICA 2015年 52卷 248-254页
作者: Ataei, Armin Wang, Qian Boston Univ Dept Elect & Comp Engn Boston MA 02215 USA Penn State Univ Dept Mech & Nucl Engn University Pk PA 16802 USA
In this paper, a probabilistic algorithm based on the deep cut ellipsoid method is proposed to solve a linear optimization problem subject to an uncertain linear matrix inequality (LMI). First, a deep cut ellipsoid al... 详细信息
来源: 评论
Unfalsified model reference adaptive control using the ellipsoid algorithm
收藏 引用
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING 2004年 第8期18卷 683-696页
作者: Cabral, FB Safonov, MG Univ Estadual Rio Grande do Sul BR-92500000 Guaiba RS Brazil Univ So Calif Los Angeles CA 90089 USA
The unfalsified control paradigm which uses as plant information, experimental trajectories of plant signals, is applied to the model reference adaptive control problem. The use of an ellipsoid algorithm overcomes the... 详细信息
来源: 评论
Optimized ellipsoid algorithm for LMI feasibility problems
收藏 引用
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS 2014年 第4期12卷 915-917页
作者: Im, Ki Hong Baang, Dane Samsung Elect Co Suwon Gyeonggi Do South Korea Korea Atom Energy Res Inst Taejon South Korea
ellipsoid algorithm with deepest-cut method is presented for LMI(Linear Matrix Inequality) feasibility problems. The proposed algorithm removes more than half of the previous step's ellipsoid to obtain faster conv... 详细信息
来源: 评论
Improved ellipsoid algorithm for LMI Feasibility Problems
收藏 引用
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS 2009年 第6期7卷 1015-1019页
作者: Baang, Dane Samsung Elect Suwon 443742 Gyeonggi Do South Korea
An improved ellipsoid algorithm for solving general LMI feasibility problems is proposed. The proposed algorithm uses a deep-cut approach and introduces an affine transformation-based design to obtain the minimal-volu... 详细信息
来源: 评论
An ellipsoid algorithm for equality-constrained nonlinear programs
收藏 引用
COMPUTERS & OPERATIONS RESEARCH 2001年 第1期28卷 85-92页
作者: Shah, S Mitchell, JE Kupferschmid, M Rensselaer Polytech Inst Acad Comp Serv Troy NY 12180 USA United Airlines Elk Grove Village IL 60007 USA
This paper describes an ellipsoid algorithm that solves convex problems having linear equality constraints with or without inequality constraints. Experimental results show that the new method is also effective for so... 详细信息
来源: 评论
Active set strategies in an ellipsoid algorithm for nonlinear programming
收藏 引用
COMPUTERS & OPERATIONS RESEARCH 2004年 第6期31卷 941-962页
作者: Rugenstein, EK Kupferschmid, M US Mil Acad Dept Math Sci W Point NY 10996 USA Rensselaer Polytech Inst Troy NY 12180 USA
The classical ellipsoid algorithm solves convex nonlinear programming problems having feasible sets of full dimension. Convergence is certain only for the convex case (Math. Oper. Res. 10 (1985) 515), but the algorith... 详细信息
来源: 评论
THE SPHERE METHOD AND THE ROBUSTNESS OF THE ellipsoid algorithm
收藏 引用
MATHEMATICAL PROGRAMMING 1983年 第1期26卷 109-116页
作者: HALFIN, S Bell Laboratories 07733 Holmdel NJ USA
We present a method for implementing the ellipsoid algorithm, whose basic iterative step is a linear row manipulation on the matrix of inequalities. This step is somewhat similar to a simplex iteration, and may give a... 详细信息
来源: 评论
AN ellipsoid algorithm FOR NON-LINEAR PROGRAMMING
收藏 引用
MATHEMATICAL PROGRAMMING 1983年 第1期27卷 83-106页
作者: ECKER, JG KUPFERSCHMID, M RENSSELAER POLYTECH INST ALAN M VOORHEES COMP CTRTROYNY 12181
We investigate an ellipsoid algorithm for nonlinear programming. After describing the basic steps of the algorithm, we discuss its computer implementation and present a method for measuring computational efficiency. T... 详细信息
来源: 评论