咨询与建议

限定检索结果

文献类型

  • 30 篇 期刊文献
  • 4 篇 会议

馆藏范围

  • 34 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 24 篇 工学
    • 10 篇 控制科学与工程
    • 9 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 4 篇 软件工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 信息与通信工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
  • 18 篇 理学
    • 18 篇 数学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 18 篇 管理学
    • 18 篇 管理科学与工程(可...
    • 1 篇 公共管理
  • 2 篇 经济学
    • 1 篇 理论经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 34 篇 ellipsoid algori...
  • 5 篇 linear programmi...
  • 4 篇 computational co...
  • 4 篇 nonlinear progra...
  • 3 篇 linear inequalit...
  • 3 篇 convex programmi...
  • 3 篇 lmi
  • 3 篇 convex optimizat...
  • 2 篇 cutting plane me...
  • 2 篇 computational ex...
  • 2 篇 interior-point m...
  • 2 篇 nonlinear optimi...
  • 2 篇 linear matrix in...
  • 2 篇 algorithm evalua...
  • 2 篇 ewma
  • 2 篇 equality constra...
  • 2 篇 tracking error
  • 2 篇 geometric progra...
  • 2 篇 robustness
  • 2 篇 portfolio select...

机构

  • 1 篇 cornell univ ith...
  • 1 篇 tel aviv univers...
  • 1 篇 hebrew univ jeru...
  • 1 篇 heinz nixdorf in...
  • 1 篇 politecn torino ...
  • 1 篇 department of co...
  • 1 篇 qingdao campus n...
  • 1 篇 bell laboratorie...
  • 1 篇 department of ma...
  • 1 篇 rensselaer polyt...
  • 1 篇 european institu...
  • 1 篇 nankai univ coll...
  • 1 篇 eecs mit
  • 1 篇 cornell univ sch...
  • 1 篇 rensselaer polyt...
  • 1 篇 univ waterloo de...
  • 1 篇 department of ma...
  • 1 篇 delft univ techn...
  • 1 篇 mit dept elect e...
  • 1 篇 korea adv inst s...

作者

  • 5 篇 kupferschmid m
  • 3 篇 ecker jg
  • 2 篇 jin chu-xin
  • 2 篇 chen wan-yi
  • 2 篇 freund robert m.
  • 2 篇 baang dane
  • 2 篇 yu shu-jing
  • 1 篇 kim s
  • 1 篇 yang cai
  • 1 篇 zhang s
  • 1 篇 recht p.
  • 1 篇 de sterck hans
  • 1 篇 todd mj
  • 1 篇 kanev s
  • 1 篇 goldfarb d
  • 1 篇 haim kaplan
  • 1 篇 calafiore giusep...
  • 1 篇 safonov mg
  • 1 篇 sanders geoffrey
  • 1 篇 miller killian

语言

  • 32 篇 英文
  • 2 篇 其他
检索条件"主题词=ellipsoid algorithm"
34 条 记 录,以下是11-20 订阅
排序:
Neural network training with optimal bounded ellipsoid algorithm
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2009年 第6期18卷 623-631页
作者: de Jesus Rubio, Jose Yu, Wen Ferreyra, Andres UAM Azcapotzalco Dept Elect Area Instrumentac Mexico City DF Mexico Inst Politecn Nacl ESIME Azcapotzalco Secc Estudios Posgrad & Invest Mexico City DF Mexico IPN CINVESTAV Dept Automat Control Mexico City 07360 DF Mexico
Compared to normal learning algorithms, for example backpropagation, the optimal bounded ellipsoid (OBE) algorithm has some better properties, such as faster convergence, since it has a similar structure as Kalman fil... 详细信息
来源: 评论
MODIFICATIONS AND IMPLEMENTATION OF THE ellipsoid algorithm FOR LINEAR-PROGRAMMING
收藏 引用
MATHEMATICAL PROGRAMMING 1982年 第1期23卷 1-19页
作者: GOLDFARB, D TODD, MJ CORNELL UNIV ITHACANY 14853
We give some modifications of the ellipsoid algorithm for linear programming and describe a numerically stable implementation. We are concerned with practical problems where user-supplied bounds can usually be provide... 详细信息
来源: 评论
An Oblivious ellipsoid algorithm for Solving a System of (In)Feasible Linear Inequalities
收藏 引用
MATHEMATICS OF OPERATIONS RESEARCH 2024年 第1期49卷 1-651, C2页
作者: Lamperski, Jourdain Freund, Robert M. Todd, Michael J. Univ Pittsburgh Ind Engn Pittsburgh PA 15213 USA MIT Sloan Sch Management Cambridge MA 02139 USA Cornell Univ Sch Operat Res & Informat Engn Ithaca NY 14853 USA
The ellipsoid algorithm is a fundamental algorithm for computing a solution to the system of m linear inequalities in n variables (P) : A(T)x = 0. This paper develops an oblivious ellipsoid algorithm (OEA) that either... 详细信息
来源: 评论
An objective-function ellipsoid-algorithm for convex quadratical programming
收藏 引用
Optimization 1986年 第3期17卷 333-347页
作者: Recht, P. Universität Karlsruhe Institut für Statistik und Mathematische Wirtsehaftstheorie Germany
An ellipsoid algorithm for convex, quadratical programming is given, based on the use of the objective function itself for ellipsoidal iterations. An implemented version is presented and numerical results are discusse... 详细信息
来源: 评论
ellipsoid algorithmS IN MATHEMATICAL-PROGRAMMING
收藏 引用
HUMAN SYSTEMS MANAGEMENT 1980年 第2期1卷 173-178页
作者: ZELENY, M European Institute for Advanced Studies in Management Brussels Belgium
Newly proposed ellipsoid algorithms provide considerable hope for advancing the relevance of mathematical programming applications. They are extremely suitalbe for multiobjective programming, goal programming and inte... 详细信息
来源: 评论
USING 2 SUCCESSIVE SUBGRADIENTS IN THE ellipsoid METHOD FOR NONLINEAR-PROGRAMMING
收藏 引用
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS 1994年 第3期82卷 543-554页
作者: KIM, S KIM, D CHANG, KN Department of Management Science Korea Advanced Institute of Science and Technology Taejon Korea
A variant of the ellipsoid method for nonlinear programming is introduced to enhance the speed of convergence. This variant is based on a new simple scheme to reduce the ellipsoid volume by using two center cuts gener... 详细信息
来源: 评论
AN ellipsoid TRUST REGION BUNDLE METHOD FOR NONSMOOTH CONVEX MINIMIZATION
收藏 引用
SIAM JOURNAL ON CONTROL AND OPTIMIZATION 1989年 第4期27卷 737-757页
作者: KIWIEL, KC
This paper presents a bundle method of descent for minimizing a convex (possibly nonsmooth) function f of several variables. At each iteration the algorithm finds a trial point by minimizing a polyhedral model of f su... 详细信息
来源: 评论
Equivalence of Convex Problem Geometry and Computational Complexity in the Separation Oracle Model
收藏 引用
MATHEMATICS OF OPERATIONS RESEARCH 2009年 第4期34卷 869-879页
作者: Freund, Robert M. Vera, Jorge R. MIT Alfred P Sloan Sch Management Cambridge MA 02142 USA Pontificia Univ Catolica Chile Dept Ingn Ind & Sistemas Fac Ingn Santiago 7820436 Chile
Consider the supposedly simple problem of computing a point in a convex set that is conveyed by a separation oracle with no further information (e. g., no domain ball containing or intersecting the set, etc.). The aut... 详细信息
来源: 评论
General models in min-max continuous location: Theory and solution techniques
收藏 引用
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS 1996年 第1期89卷 39-63页
作者: Frenk, JBG Gromicho, J Zhang, S UNIV LISBON FAC CIENCIAS DEIO LISBON PORTUGAL
In this paper, a class of min-max continuous location problems is discussed. After giving a complete characterization of the stationary points, we propose a simple central and deep-cut ellipsoid algorithm to solve the... 详细信息
来源: 评论
On Vaidya's volumetric cutting plane method for convex programming
收藏 引用
MATHEMATICS OF OPERATIONS RESEARCH 1997年 第1期22卷 63-89页
作者: Anstreicher, KM Department of Management Sciences University of Iowa Iowa City IA 52242 United States
We describe a simplified and strengthened version of Vaidya's volumetric cutting plane method for finding a point in a convex set C subset of R(n). At each step the algorithm has a system of linear inequality cons... 详细信息
来源: 评论