咨询与建议

限定检索结果

文献类型

  • 30 篇 期刊文献
  • 4 篇 会议

馆藏范围

  • 34 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 24 篇 工学
    • 10 篇 控制科学与工程
    • 9 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 4 篇 软件工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 信息与通信工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
  • 18 篇 理学
    • 18 篇 数学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 18 篇 管理学
    • 18 篇 管理科学与工程(可...
    • 1 篇 公共管理
  • 2 篇 经济学
    • 1 篇 理论经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 34 篇 ellipsoid algori...
  • 5 篇 linear programmi...
  • 4 篇 computational co...
  • 4 篇 nonlinear progra...
  • 3 篇 linear inequalit...
  • 3 篇 convex programmi...
  • 3 篇 lmi
  • 3 篇 convex optimizat...
  • 2 篇 cutting plane me...
  • 2 篇 computational ex...
  • 2 篇 interior-point m...
  • 2 篇 nonlinear optimi...
  • 2 篇 linear matrix in...
  • 2 篇 algorithm evalua...
  • 2 篇 ewma
  • 2 篇 equality constra...
  • 2 篇 tracking error
  • 2 篇 geometric progra...
  • 2 篇 robustness
  • 2 篇 portfolio select...

机构

  • 1 篇 cornell univ ith...
  • 1 篇 tel aviv univers...
  • 1 篇 hebrew univ jeru...
  • 1 篇 heinz nixdorf in...
  • 1 篇 politecn torino ...
  • 1 篇 department of co...
  • 1 篇 qingdao campus n...
  • 1 篇 bell laboratorie...
  • 1 篇 department of ma...
  • 1 篇 rensselaer polyt...
  • 1 篇 european institu...
  • 1 篇 nankai univ coll...
  • 1 篇 eecs mit
  • 1 篇 cornell univ sch...
  • 1 篇 rensselaer polyt...
  • 1 篇 univ waterloo de...
  • 1 篇 department of ma...
  • 1 篇 delft univ techn...
  • 1 篇 mit dept elect e...
  • 1 篇 korea adv inst s...

作者

  • 5 篇 kupferschmid m
  • 3 篇 ecker jg
  • 2 篇 jin chu-xin
  • 2 篇 chen wan-yi
  • 2 篇 freund robert m.
  • 2 篇 baang dane
  • 2 篇 yu shu-jing
  • 1 篇 kim s
  • 1 篇 yang cai
  • 1 篇 zhang s
  • 1 篇 recht p.
  • 1 篇 de sterck hans
  • 1 篇 todd mj
  • 1 篇 kanev s
  • 1 篇 goldfarb d
  • 1 篇 haim kaplan
  • 1 篇 calafiore giusep...
  • 1 篇 safonov mg
  • 1 篇 sanders geoffrey
  • 1 篇 miller killian

语言

  • 32 篇 英文
  • 2 篇 其他
检索条件"主题词=ellipsoid algorithm"
34 条 记 录,以下是21-30 订阅
排序:
Optimal oblivious routing in polynomial time  03
Optimal oblivious routing in polynomial time
收藏 引用
Proceedings of the thirty-fifth annual ACM symposium on Theory of computing
作者: Yossi Azar Edith Cohen Amos Fiat Haim Kaplan Harald Racke Tel Aviv University Tel Aviv Israel AT&T research labs Florham park NJ Heinz Nixdorf Institute and Paderborn University Paderborn Germany
A recent seminal result of Racke is that for any network there is an oblivious routing algorithm with a polylog competitive ratio with respect to congestion. Unfortunately, Racke's construction is not polynomial t... 详细信息
来源: 评论
On Vaidya's volumetric cutting plane method for convex programming
收藏 引用
MATHEMATICS OF OPERATIONS RESEARCH 1997年 第1期22卷 63-89页
作者: Anstreicher, KM Department of Management Sciences University of Iowa Iowa City IA 52242 United States
We describe a simplified and strengthened version of Vaidya's volumetric cutting plane method for finding a point in a convex set C subset of R(n). At each step the algorithm has a system of linear inequality cons... 详细信息
来源: 评论
General models in min-max continuous location: Theory and solution techniques
收藏 引用
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS 1996年 第1期89卷 39-63页
作者: Frenk, JBG Gromicho, J Zhang, S UNIV LISBON FAC CIENCIAS DEIO LISBON PORTUGAL
In this paper, a class of min-max continuous location problems is discussed. After giving a complete characterization of the stationary points, we propose a simple central and deep-cut ellipsoid algorithm to solve the... 详细信息
来源: 评论
USING 2 SUCCESSIVE SUBGRADIENTS IN THE ellipsoid METHOD FOR NONLINEAR-PROGRAMMING
收藏 引用
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS 1994年 第3期82卷 543-554页
作者: KIM, S KIM, D CHANG, KN Department of Management Science Korea Advanced Institute of Science and Technology Taejon Korea
A variant of the ellipsoid method for nonlinear programming is introduced to enhance the speed of convergence. This variant is based on a new simple scheme to reduce the ellipsoid volume by using two center cuts gener... 详细信息
来源: 评论
FUZZY-PROGRAMMING TECHNIQUE TO SOLVE MULTIOBJECTIVE GEOMETRIC-PROGRAMMING PROBLEMS
收藏 引用
FUZZY SETS AND SYSTEMS 1992年 第1期51卷 67-71页
作者: BISWAL, MP Department of Mathematics Indian Institute of Technology Kharagpur India
In this paper fuzzy programming technique is used to solve a multi-objective geometric programming problem as a vector minimum problem. A fuzzy membership function is defined for the multi-objective geometric programm... 详细信息
来源: 评论
AN ellipsoid TRUST REGION BUNDLE METHOD FOR NONSMOOTH CONVEX MINIMIZATION
收藏 引用
SIAM JOURNAL ON CONTROL AND OPTIMIZATION 1989年 第4期27卷 737-757页
作者: KIWIEL, KC
This paper presents a bundle method of descent for minimizing a convex (possibly nonsmooth) function f of several variables. At each iteration the algorithm finds a trial point by minimizing a polyhedral model of f su... 详细信息
来源: 评论
An objective-function ellipsoid-algorithm for convex quadratical programming
收藏 引用
Optimization 1986年 第3期17卷 333-347页
作者: Recht, P. Universität Karlsruhe Institut für Statistik und Mathematische Wirtsehaftstheorie Germany
An ellipsoid algorithm for convex, quadratical programming is given, based on the use of the objective function itself for ellipsoidal iterations. An implemented version is presented and numerical results are discusse... 详细信息
来源: 评论
A COMPUTATIONAL COMPARISON OF THE ellipsoid algorithm WITH SEVERAL NONLINEAR-PROGRAMMING algorithmS
收藏 引用
SIAM JOURNAL ON CONTROL AND OPTIMIZATION 1985年 第5期23卷 657-674页
作者: ECKER, JG KUPFERSCHMID, M RENSSELAER POLYTECH INST VOORHEES COMP CTRTROYNY 12181
A computational comparison of several general purpose nonlinear programming algorithms is presented. This study was motivated by the preliminary results in [12] which show that the recently developed ellipsoid algorit... 详细信息
来源: 评论
THE SPHERE METHOD AND THE ROBUSTNESS OF THE ellipsoid algorithm
收藏 引用
MATHEMATICAL PROGRAMMING 1983年 第1期26卷 109-116页
作者: HALFIN, S Bell Laboratories 07733 Holmdel NJ USA
We present a method for implementing the ellipsoid algorithm, whose basic iterative step is a linear row manipulation on the matrix of inequalities. This step is somewhat similar to a simplex iteration, and may give a... 详细信息
来源: 评论
AN ellipsoid algorithm FOR NON-LINEAR PROGRAMMING
收藏 引用
MATHEMATICAL PROGRAMMING 1983年 第1期27卷 83-106页
作者: ECKER, JG KUPFERSCHMID, M RENSSELAER POLYTECH INST ALAN M VOORHEES COMP CTRTROYNY 12181
We investigate an ellipsoid algorithm for nonlinear programming. After describing the basic steps of the algorithm, we discuss its computer implementation and present a method for measuring computational efficiency. T... 详细信息
来源: 评论