咨询与建议

限定检索结果

文献类型

  • 3,792 篇 期刊文献
  • 698 篇 会议
  • 70 篇 学位论文
  • 11 篇 资讯
  • 2 册 图书

馆藏范围

  • 4,573 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,057 篇 理学
    • 2,310 篇 统计学(可授理学、...
    • 967 篇 数学
    • 609 篇 生物学
    • 167 篇 物理学
    • 42 篇 系统科学
    • 39 篇 地球物理学
  • 2,063 篇 工学
    • 1,257 篇 计算机科学与技术...
    • 656 篇 电气工程
    • 201 篇 信息与通信工程
    • 174 篇 控制科学与工程
    • 155 篇 软件工程
    • 73 篇 电子科学与技术(可...
    • 72 篇 机械工程
    • 70 篇 仪器科学与技术
    • 50 篇 环境科学与工程(可...
    • 50 篇 生物医学工程(可授...
    • 36 篇 测绘科学与技术
    • 36 篇 交通运输工程
    • 35 篇 土木工程
  • 1,213 篇 经济学
    • 1,134 篇 应用经济学
    • 128 篇 理论经济学
  • 406 篇 医学
    • 204 篇 基础医学(可授医学...
    • 159 篇 临床医学
    • 157 篇 公共卫生与预防医...
    • 45 篇 特种医学
  • 390 篇 农学
    • 38 篇 作物学
  • 353 篇 管理学
    • 240 篇 管理科学与工程(可...
    • 53 篇 工商管理
    • 51 篇 公共管理
  • 143 篇 教育学
    • 133 篇 心理学(可授教育学...
  • 32 篇 法学
  • 12 篇 文学
  • 4 篇 军事学
  • 4 篇 艺术学
  • 2 篇 哲学

主题

  • 4,573 篇 em algorithm
  • 186 篇 maximum likeliho...
  • 181 篇 maximum likeliho...
  • 164 篇 mixture models
  • 161 篇 missing data
  • 153 篇 mixture model
  • 112 篇 clustering
  • 73 篇 hidden markov mo...
  • 72 篇 gaussian mixture...
  • 68 篇 incomplete data
  • 65 篇 parameter estima...
  • 60 篇 model selection
  • 58 篇 bootstrap
  • 56 篇 longitudinal dat...
  • 55 篇 kalman filter
  • 54 篇 hidden markov mo...
  • 53 篇 model-based clus...
  • 48 篇 expectation-maxi...
  • 47 篇 classification
  • 45 篇 random effects

机构

  • 24 篇 univ n carolina ...
  • 24 篇 univ missouri de...
  • 23 篇 penn state univ ...
  • 22 篇 univ washington ...
  • 22 篇 mcmaster univ de...
  • 21 篇 univ hong kong d...
  • 21 篇 mcmaster univ de...
  • 20 篇 univ michigan de...
  • 20 篇 indian inst tech...
  • 19 篇 shanghai univ fi...
  • 19 篇 univ connecticut...
  • 18 篇 harvard univ dep...
  • 16 篇 harvard univ sch...
  • 16 篇 univ florida dep...
  • 16 篇 univ washington ...
  • 16 篇 univ calif river...
  • 15 篇 univ waterloo de...
  • 14 篇 peking univ lmam...
  • 14 篇 guangzhou univ s...
  • 14 篇 univ british col...

作者

  • 39 篇 kundu debasis
  • 27 篇 yao weixin
  • 26 篇 lachos victor h.
  • 26 篇 balakrishnan n.
  • 23 篇 sun jianguo
  • 19 篇 tian guo-liang
  • 18 篇 ma jinwen
  • 17 篇 pal suvra
  • 17 篇 okamura hiroyuki
  • 17 篇 huang biao
  • 17 篇 dohi tadashi
  • 16 篇 bartolucci franc...
  • 16 篇 peng yingwei
  • 16 篇 wu rongling
  • 15 篇 shen pao-sheng
  • 15 篇 punzo antonio
  • 14 篇 zhang jiajia
  • 14 篇 zeng donglin
  • 14 篇 mclachlan gj
  • 14 篇 mclachlan geoffr...

语言

  • 4,179 篇 英文
  • 363 篇 其他
  • 20 篇 中文
  • 3 篇 德文
  • 1 篇 西班牙文
  • 1 篇 法文
  • 1 篇 日文
检索条件"主题词=em algorithm"
4573 条 记 录,以下是541-550 订阅
排序:
ON THE em algorithm FOR THE ESTIMATION OF SPEECH AR PARAMETERS IN NOISE
ON THE EM ALGORITHM FOR THE ESTIMATION OF SPEECH AR PARAMETE...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Kuropatwinski, Marcin Kleijn, Bastiaan VOICE LAB Gdynia Poland
In this paper, the estimation of speech AR parameters under noisy conditions is revisited. The em algorithm serving this purpose was first proposed by Gannot et al. We present an extensive experimental study along wit... 详细信息
来源: 评论
Interference Suppression Using em algorithm in OFDM Transmissions
Interference Suppression Using EM Algorithm in OFDM Transmis...
收藏 引用
IEEE Global Communications Conference (GLOBECOM)
作者: Yoda, Naotoshi Ohtsuki, Tomoaki Mashino, Jun Sugiyama, Takatoshi Keio Univ Dept Informat & Comp Sci Kohoku Ku 3-14-1 Hiyoshi Yokohama Kanagawa 2238522 Japan NTT Access Network Serv Syst Labs Yokosuka Kanagawa 2390847 Japan
Interference detection and suppression schemes are proposed for coded OFDM systems in the presence of narrow-band interference. Previously proposed interference detection schemes perform with a recursive forward error... 详细信息
来源: 评论
Estimating a Cognitive Diagnostic Model for Multiple Strategies via the em algorithm
收藏 引用
APPLIED PSYCHOLOGICAL MEASURemENT 2014年 第6期38卷 464-485页
作者: Huo, Yan de la Torre, Jimmy Rutgers State Univ New Brunswick NJ 08901 USA
The single-strategy deterministic, inputs, noisy "and'' gate (SS-DINA) model has previously been extended to a model called the multiple-strategy deterministic, inputs, noisy "and'' gate (MSD... 详细信息
来源: 评论
Mixed Noise Image De-noising Based on em algorithm
Mixed Noise Image De-noising Based on EM Algorithm
收藏 引用
International Conference on Mechatronics Engineering and Computing Technology (ICMECT)
作者: Shi Guicun Wang Feixing Univ Sci & Technol Beijing Sch Math & Phys Beijing 100083 Peoples R China
Obtaining high quality images is very important in many areas of applied sciences, but images are usually polluted by noise in the process of generation, transmission and acquisition. In recent years, wavelet analysis... 详细信息
来源: 评论
A parallel em algorithm for Gaussian Mixture Models implemented on a NUMA system using OpenMP
A parallel EM algorithm for Gaussian Mixture Models implemen...
收藏 引用
22nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)
作者: Kwedlo, Wojciech Bialystok Tech Univ Fac Comp Sci PL-15351 Bialystok Poland
In the paper the problem of estimation of Gaussian mixture model parameters is considered. A shared memory parallelization of the standard em algorithm, based on data decomposition, is proposed. Our approach uses a ro... 详细信息
来源: 评论
Find truth in the hands of the few:acquiring specific knowledge with crowdsourcing
收藏 引用
Frontiers of Computer Science 2021年 第4期15卷 5-16页
作者: Tao HAN Hailong SUN Yangqiu SONG Yili FANG Xudong LIU SKLSDE Lab School of Computer Science and EngineeringBeihang UniversityBeijing 100191China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang UniversityBeijing 100191China Department of Computer Science and Engineering Hong Kong University of Science and TechnologyClearwater BayHong Kong 999077China School of Computer and Information Engineering Zhejiang Gongshang UniversityHangzhou 310018China
Crowdsourcing has been a helpful mechanism to leverage human intelligence to acquire useful ***,when we aggregate the crowd knowledge based on the currently developed voting algorithms,it often results in common knowl... 详细信息
来源: 评论
A Precise Hard-Cut em algorithm for Mixtures of Gaussian Processes
A Precise Hard-Cut EM Algorithm for Mixtures of Gaussian Pro...
收藏 引用
10th International Conference on Intelligent Computing (ICIC)
作者: Chen, Ziyi Ma, Jinwen Zhou, Yatong Peking Univ Sch Math Sci Dept Informat Sci Beijing 100871 Peoples R China
The mixture of Gaussian processes (MGP) is a powerful framework for machine learning. However, its parameter learning or estimation is still a very challenging problem. In this paper, a precise hard-cut em algorithm i... 详细信息
来源: 评论
Reinforcement learning, particle filters and the em algorithm
Reinforcement learning, particle filters and the EM algorith...
收藏 引用
Information Theory and Applications Workshop (ITA)
作者: Borkar, Vivek S. Jain, Ankushkumar Indian Inst Technol Dept Elect Engn Bombay 400076 Maharashtra India
We consider a parameter estimation problem for a Hidden Markov Model in the framework of particle filters. Using constructs from reinforcement learning for variance reduction in particle filters, a simulation based sc... 详细信息
来源: 评论
Modeling product degradation with heterogeneity: A general random-effects Wiener process approach
收藏 引用
IISE TRANSACTIONS 2024年
作者: Zhai, Qingqing Li, Yaqiu Chen, Piao Shanghai Univ Sch Management Shanghai Peoples R China China Elect Prod Reliabil & Environm Testing Res I Guangzhou Peoples R China Guangdong Prov Key Lab Elect Informat Prod Reliabi Guangzhou Peoples R China Zhejiang Univ ZJU UIUC Inst Haining Peoples R China
Degradation of many products in practical applications is often subject to unit-to-unit heterogeneity. Such heterogeneity can be attributed to the heterogeneous quality of the raw materials and the fluctuation of the ... 详细信息
来源: 评论
Liu-type shrinkage estimators for mixture of logistic regressions: an osteoporosis study
收藏 引用
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION 2024年
作者: Ghanem, Elsayed Hatefi, Armin Usefi, Hamid Mem Univ Newfoundland Dept Math & Stat St John NF Canada
The logistic regression model is one of the most powerful statistical methods for the analysis of binary data. Logistic regression allows using a set of covariates to explain the binary responses. A mixture of logisti... 详细信息
来源: 评论