咨询与建议

限定检索结果

文献类型

  • 551 篇 期刊文献
  • 335 篇 会议
  • 15 篇 学位论文
  • 1 册 图书

馆藏范围

  • 902 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 847 篇 工学
    • 570 篇 计算机科学与技术...
    • 324 篇 电气工程
    • 130 篇 软件工程
    • 88 篇 信息与通信工程
    • 77 篇 控制科学与工程
    • 58 篇 仪器科学与技术
    • 48 篇 测绘科学与技术
    • 40 篇 生物医学工程(可授...
    • 33 篇 土木工程
    • 28 篇 环境科学与工程(可...
    • 27 篇 机械工程
    • 24 篇 电子科学与技术(可...
    • 19 篇 石油与天然气工程
    • 14 篇 动力工程及工程热...
    • 11 篇 水利工程
    • 10 篇 光学工程
    • 10 篇 材料科学与工程(可...
    • 10 篇 交通运输工程
    • 9 篇 力学(可授工学、理...
    • 8 篇 建筑学
  • 187 篇 理学
    • 82 篇 物理学
    • 47 篇 地球物理学
    • 35 篇 生物学
    • 26 篇 化学
    • 12 篇 数学
  • 171 篇 医学
    • 130 篇 临床医学
    • 26 篇 基础医学(可授医学...
    • 21 篇 特种医学
  • 61 篇 管理学
    • 56 篇 管理科学与工程(可...
  • 10 篇 文学
    • 8 篇 外国语言文学
  • 7 篇 农学
  • 5 篇 艺术学
  • 2 篇 法学
  • 1 篇 经济学
  • 1 篇 教育学

主题

  • 902 篇 encoder-decoder
  • 159 篇 deep learning
  • 81 篇 attention mechan...
  • 60 篇 attention
  • 54 篇 semantic segment...
  • 48 篇 feature extracti...
  • 46 篇 lstm
  • 38 篇 transformer
  • 36 篇 decoding
  • 35 篇 convolutional ne...
  • 32 篇 cnn
  • 24 篇 semantics
  • 22 篇 image captioning
  • 22 篇 u-net
  • 22 篇 convolutional ne...
  • 21 篇 speech recogniti...
  • 20 篇 task analysis
  • 20 篇 machine learning
  • 19 篇 long short-term ...
  • 18 篇 image segmentati...

机构

  • 8 篇 univ chinese aca...
  • 8 篇 univ sci & techn...
  • 6 篇 chinese acad sci...
  • 6 篇 univ sci & techn...
  • 6 篇 univ sci & techn...
  • 5 篇 nanjing univ sci...
  • 4 篇 jiangnan univ sc...
  • 4 篇 microsoft corp r...
  • 4 篇 chongqing univ c...
  • 4 篇 wuhan univ sch r...
  • 4 篇 shenyang siasun ...
  • 4 篇 southeast univ s...
  • 4 篇 univ sci & techn...
  • 4 篇 toyota technol i...
  • 4 篇 iflytek res peop...
  • 4 篇 google inc mount...
  • 4 篇 shanghai jiao to...
  • 4 篇 northeastern uni...
  • 4 篇 tianjin univ sch...
  • 4 篇 chinese acad sci...

作者

  • 8 篇 watanabe shinji
  • 7 篇 du jun
  • 6 篇 liu yang
  • 6 篇 chen kai
  • 6 篇 zhang jianshu
  • 5 篇 ling zhen-hua
  • 5 篇 zhang limao
  • 5 篇 wang feng
  • 5 篇 wang jun
  • 4 篇 gaur yashesh
  • 4 篇 zhang chunyu
  • 4 篇 wu chengdong
  • 4 篇 wang qing
  • 4 篇 wang bing
  • 4 篇 li chen
  • 4 篇 song xiao
  • 4 篇 xu bo
  • 4 篇 xu fang
  • 4 篇 jiao licheng
  • 4 篇 toshniwal shubha...

语言

  • 840 篇 英文
  • 31 篇 中文
  • 29 篇 其他
  • 3 篇 法文
  • 1 篇 德文
  • 1 篇 俄文
检索条件"主题词=encoder-decoder"
902 条 记 录,以下是221-230 订阅
排序:
T2S: An encoder-decoder Model for Topic-Based Natural Language Generation  23rd
T2S: An Encoder-Decoder Model for Topic-Based Natural Langua...
收藏 引用
23rd International Conference on Applications of Natural Language to Information Systems (NLDB)
作者: Ou, Wenjie Chen, Chaotao Ren, Jiangtao Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou Guangdong Peoples R China
Natural language generation (NLG) plays a critical role in various natural language processing (NLP) applications. And the topics provide a powerful tool to understand the natural language. We propose a novel topic-ba... 详细信息
来源: 评论
Colorectal Segmentation using Multiple encoder-decoder Network in Colonoscopy Images  1
Colorectal Segmentation using Multiple Encoder-Decoder Netwo...
收藏 引用
1st IEEE International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)
作者: Ngoc-Quang Nguyen Lee, Sang-Woong Gachon Univ Pattern Recognit & Machine Learning Lab Seongnam South Korea
Colorectal cancer is the third most common cancer which causes of cancer-related deaths. Therefore, early diagnosis of polyps by colonoscopy could result in successful treatment. Diagnosis of polyps in colonoscopy vid... 详细信息
来源: 评论
DSNet:Multi-resolution Dense encoder and Stack decoder Network for Aerial Image Segmentation
DSNet:Multi-resolution Dense Encoder and Stack Decoder Netwo...
收藏 引用
Chinese Automation Congress (CAC)
作者: Chong, Yanwen Nie, Congchong Tao, Yulong Pan, Shaoming Wuhan Univ State Key Lab Informat Engn Surveying Mapping & R Wuhan Peoples R China
Semantic segmentation in high resolution aerial image is faced with a challenge caused by ubiquitous fine-structure objects. Traditional encoder-decoder structure losses some detail information during the process of d... 详细信息
来源: 评论
FEATURE FUSION encoder decoder NETWORK FOR AUTOMATIC LIVER LESION SEGMENTATION  16
FEATURE FUSION ENCODER DECODER NETWORK FOR AUTOMATIC LIVER L...
收藏 引用
16th IEEE International Symposium on Biomedical Imaging (ISBI)
作者: Chen, Xueying Zhang, Rong Yang, Pingkun Univ Sci & Technol China Dept Elect Engn & Informat Sci Hefei Anhui Peoples R China Rensselaer Polytech Inst Dept Biomed Engn Troy NY 12180 USA
Liver lesion segmentation is a difficult yet critical task for medical image analysis. Recently, deep learning based image segmentation methods have achieved promising performance, which can be divided into three cate... 详细信息
来源: 评论
ECTC-DOCD: An End-to-end Structure with CTC encoder and OCD decoder for Speech Recognition  20
ECTC-DOCD: An End-to-end Structure with CTC Encoder and OCD ...
收藏 引用
Interspeech Conference
作者: Yi, Cheng Wang, Feng Xu, Bo Chinese Acad Sci Inst Automat Beijing Peoples R China Univ Chinese Acad Sci Beijinga Peoples R China
Real-time streaming speech recognition is required by most applications for a nice interactive experience. To naturally support online recognition, a common strategy used in recently proposed end-to-end models is to i... 详细信息
来源: 评论
encoder-decoder WITH FOCUS-MECHANISM FOR SEQUENCE LABELLING BASED SPOKEN LANGUAGE UNDERSTANDING
ENCODER-DECODER WITH FOCUS-MECHANISM FOR SEQUENCE LABELLING ...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Zhu, Su Yu, Kai Shanghai Jiao Tong Univ Brain Sci & Technol Res Ctr Key Lab Shanghai Educ Commiss Intelligent Interac SpeechLabDept Comp Sci & Engn Shanghai Peoples R China
This paper investigates the framework of encoder-decoder with attention for sequence labelling based spoken language understanding. We introduce Bidirectional Long Short Term Memory - Long Short Term Memory networks (... 详细信息
来源: 评论
ECRU: An encoder-decoder Based Convolution Neural Network (CNN) for Road-Scene Understanding
收藏 引用
JOURNAL OF IMAGING 2018年 第10期4卷 116-116页
作者: Yasrab, Robail Univ Nottingham Comp Vis Lab Sch Comp Sci Nottingham NG8 1BB England Univ Sci & Technol China Sch Comp Sci & Technol Hefei 230000 Anhui Peoples R China
This research presents the idea of a novel fully-Convolutional Neural Network (CNN)-based model for probabilistic pixel-wise segmentation, titled encoder-decoder-based CNN for Road-Scene Understanding (ECRU). Lately, ... 详细信息
来源: 评论
A Non-negative Symmetric encoder-decoder Approach for Community Detection  17
A Non-negative Symmetric Encoder-Decoder Approach for Commun...
收藏 引用
ACM Conference on Information and Knowledge Management (CIKM)
作者: Sun, Bing-Jie Shen, Huawei Gao, Jinhua Ouyang, Wentao Cheng, Xueqi Chinese Acad Sci Inst Comp Technol CAS Key Lab Network Data Sci & Technol Beijing Peoples R China
Community detection or graph clustering is crucial to understanding the structure of complex networks and extracting relevant knowledge from networked data. Latent factor model, e.g., non-negative matrix factorization... 详细信息
来源: 评论
A GRU-based encoder-decoder Approach with Attention for Online Handwritten Mathematical Expression Recognition  14
A GRU-based Encoder-Decoder Approach with Attention for Onli...
收藏 引用
14th IAPR International Conference on Document Analysis and Recognition (ICDAR)
作者: Zhang, Jianshu Du, Jun Dai, Lirong Univ Sci & Technol China Natl Engn Lab Speech & Language Informat Proc Hefei Anhui Peoples R China
In this study, we present a novel end-to-end approach based on the encoder-decoder framework with the attention mechanism for online handwritten mathematical expression recognition (OHMER). First, the input two-dimens... 详细信息
来源: 评论
Multitask Learning with Low-Level Auxiliary Tasks for encoder-decoder Based Speech Recognition  18
Multitask Learning with Low-Level Auxiliary Tasks for Encode...
收藏 引用
18th Annual Conference of the International-Speech-Communication-Association (INTERSPEECH 2017)
作者: Toshniwal, Shubham Tang, Hao Lu, Liang Livescu, Karen Toyota Technol Inst Chicago IL 60637 USA
End-to-end training of deep learning-based models allows for implicit learning of intermediate representations based on the final task loss. However, the end-to-end approach ignores the useful domain knowledge encoded... 详细信息
来源: 评论