咨询与建议

限定检索结果

文献类型

  • 52 篇 期刊文献
  • 25 篇 会议

馆藏范围

  • 77 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 73 篇 工学
    • 46 篇 计算机科学与技术...
    • 27 篇 电气工程
    • 11 篇 软件工程
    • 7 篇 信息与通信工程
    • 6 篇 控制科学与工程
    • 5 篇 电子科学与技术(可...
    • 4 篇 测绘科学与技术
    • 4 篇 交通运输工程
    • 3 篇 水利工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 土木工程
    • 2 篇 环境科学与工程(可...
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 石油与天然气工程
    • 1 篇 纺织科学与工程
    • 1 篇 航空宇航科学与技...
  • 11 篇 理学
    • 6 篇 地球物理学
    • 4 篇 物理学
    • 1 篇 化学
    • 1 篇 地理学
  • 9 篇 医学
    • 5 篇 临床医学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 文学
    • 1 篇 外国语言文学
  • 1 篇 农学

主题

  • 77 篇 encoder-decoder ...
  • 12 篇 image captioning
  • 11 篇 attention mechan...
  • 8 篇 deep learning
  • 5 篇 decoding
  • 5 篇 feature extracti...
  • 4 篇 natural language...
  • 4 篇 cnn
  • 3 篇 reinforcement le...
  • 3 篇 video captioning
  • 2 篇 transformer
  • 2 篇 semantic segment...
  • 2 篇 lstm
  • 2 篇 deep neural netw...
  • 2 篇 task analysis
  • 2 篇 remote sensing i...
  • 2 篇 transformers
  • 2 篇 image segmentati...
  • 2 篇 retrieval based ...
  • 2 篇 efficientnet

机构

  • 3 篇 tianjin univ col...
  • 3 篇 univ sci & techn...
  • 2 篇 univ sci & techn...
  • 2 篇 hohai univ natl ...
  • 2 篇 hohai univ yangt...
  • 2 篇 tianjin univ sch...
  • 2 篇 hunan univ coll ...
  • 2 篇 hohai univ coll ...
  • 1 篇 univ sci & techn...
  • 1 篇 univ texas dept ...
  • 1 篇 xijing univ sch ...
  • 1 篇 karlsruhe inst t...
  • 1 篇 abdelmalek essaa...
  • 1 篇 nanjing univ dep...
  • 1 篇 nanjing univ pos...
  • 1 篇 zhejiang univ co...
  • 1 篇 prince sultan un...
  • 1 篇 china electric p...
  • 1 篇 chinese acad sci...
  • 1 篇 univ chinese aca...

作者

  • 3 篇 zhang ke
  • 2 篇 xu teng
  • 2 篇 wei haiyang
  • 2 篇 liu jiadong
  • 2 篇 wang wenwu
  • 2 篇 lu chunhui
  • 2 篇 zhang canlong
  • 2 篇 abdussalam amr
  • 2 篇 ye zhongfu
  • 2 篇 hu qinghua
  • 2 篇 li zhixin
  • 2 篇 plumbley mark d.
  • 1 篇 jiqing yao
  • 1 篇 chaudhary gopal
  • 1 篇 ge yisu
  • 1 篇 ma lin
  • 1 篇 xue youtao
  • 1 篇 lian jing
  • 1 篇 matthew martianu...
  • 1 篇 hawbani ammar

语言

  • 76 篇 英文
  • 1 篇 其他
检索条件"主题词=encoder-decoder framework"
77 条 记 录,以下是71-80 订阅
排序:
A robust electricity price forecasting framework based on heteroscedastic temporal Convolutional Network
收藏 引用
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS 2024年 161卷
作者: Shi, Wei Wang, Yu Feng Nanjing Univ Posts & Telecommu Sch Commun & Informat Engn Nanjing Peoples R China
Electricity price forecasting (EPF) is a complex task due to market volatility and nonlinearity, which cause rapid and unpredictable fluctuations and introduce heteroscedasticity in forecasting. These factors result i... 详细信息
来源: 评论
A multi-scale 3-stacked-layer coned U-net framework for tumor segmentation in whole slide images
收藏 引用
BIOMEDICAL SIGNAL PROCESSING AND CONTROL 2023年 第PartC期86卷
作者: Abdel-Nabi, Heba Ali, Mostafa Z. Awajan, Arafat Princess Sumaya Univ Technol Dept Comp Sci Amman Jordan Jordan Univ Sci & Technol Fac Comp & Informat Technol Irbid Jordan
The contribution of deep learning in medical image diagnosis has gained extensive interest due to its excellent performance. Furthermore, the interest has also grown in digital pathology since it is considered the gol... 详细信息
来源: 评论
Automatic medical image interpretation: State of t he art and future directions
收藏 引用
PATTERN RECOGNITION 2021年 114卷 107856-107856页
作者: Ayesha, Hareem Iqbal, Sajid Tariq, Mehreen Abrar, Muhammad Sanaullah, Muhammad Abbas, Ishaq Rehman, Amjad Niazi, Muhammad Farooq Khan Hussain, Shafiq Bahauddin Zakariya Univ Dept Comp Sci Multan Pakistan Muhammad Nawaz Shareef Univ Agr Dept Comp Sci Multan Pakistan Prince Sultan Univ AIDA Lab CCIS Riyadh Saudi Arabia Bakhtawar Amin Mem Trust Hosp Multan Pakistan Univ Sahiwal Sahiwal Pakistan
Automatic Natural language interpretation of medical images is an emerging field of Artificial Intelligence (AI). The task combines two fields of AI;computer vision and natural language processing. This is a chal-leng... 详细信息
来源: 评论
A Review of Deep Learning-Based Remote Sensing Image Caption: Methods, Models, Comparisons and Future Directions
收藏 引用
REMOTE SENSING 2024年 第21期16卷 4113页
作者: Zhang, Ke Li, Peijie Wang, Jianqiang North China Elect Power Univ Dept Elect & Commun Engn Baoding 071003 Peoples R China North China Elect Power Univ Hebei Key Lab Power Internet Things Technol Baoding 071003 Peoples R China
Remote sensing images contain a wealth of Earth-observation information. Efficient extraction and application of hidden knowledge from these images will greatly promote the development of resource and environment moni... 详细信息
来源: 评论
RETRACTED: An efficient deep learning-based video captioning framework using multi-modal features (Retracted article. See vol. 42, 2025)
收藏 引用
EXPERT SYSTEMS 2021年 第2期42卷
作者: Varma, Soumya James, Dinesh Peter Karunya Inst Technol & Sci Dept Comp Sci & Engn Coimbatore 641114 Tamil Nadu India
Visual understanding has become more significant in gathering information in many real-life applications. For a human, it is a trivial task to understand the content in a visual, however the same is a challenging task... 详细信息
来源: 评论
A New CNN-RNN framework For Remote Sensing Image Captioning
A New CNN-RNN Framework For Remote Sensing Image Captioning
收藏 引用
Geoscience and Remote Sensing Symposium (M2GARSS), Mediterranean and Middle-East
作者: Genc Hoxha Farid Melgani Jacopo Slaghenauffi Department of Information Engineering and Computer Science University of Trento Trento Italy
Remote sensing (RS) image captioning has been recently attracting the attention of the community as it provides more semantic information with respect to the traditional tasks such as scene classification. Image capti... 详细信息
来源: 评论
Feature Fusion Based on Neural Image Captioning with Spatial Attention
Feature Fusion Based on Neural Image Captioning with Spatial...
收藏 引用
作者: Qingqing Lu Xiaomei Zhang Xin Kang Fuji Ren School of Information Science and Technology Nantong University Faculty of Engineering Tokushima University
Generating a natural language description of an image is a challenging but meaningful *** task combines two significant artificial intelligent fields:computer vision and natural language *** task is valuable for many ... 详细信息
来源: 评论