Channel-optimized vector quantization (COVQ) has proven to be an effective joint source-channel coding technique that makes the underlying quantizer robust to channel noise. Unfortunately, COVQ retains the high encodi...
详细信息
Channel-optimized vector quantization (COVQ) has proven to be an effective joint source-channel coding technique that makes the underlying quantizer robust to channel noise. Unfortunately, COVQ retains the high encodingcomplexity of the standard vector quantizer (VQ) for medium-to-high quantization dimensions and moderate-to-good channel conditions. A technique called sample adaptive product quantization (SAPQ) was recently introduced by Kim and Shroff to reduce the complexity of the VQ while achieving comparable distortions. In this letter, we generalize the design of SAPQ for the case of memoryless noisy channels by optimizing the quantizer with respect to both source and channel statistics. Numerical results demonstrate that the channel-optimized SAPQ (COSAPQ) achieves comparable performance to the COVQ (within 0.2 dB), while maintaining considerably lower encodingcomplexity (up to half of that of COVQ) and storage requirements. Robustness of the COSAPQ system against channel mismatch is also examined.
暂无评论