咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 计算机科学与技术...
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 1 篇 mixture models
  • 1 篇 natural image pa...
  • 1 篇 egmm algorithm
  • 1 篇 rnr
  • 1 篇 expectation maxi...
  • 1 篇 em algorithm
  • 1 篇 image patch prio...
  • 1 篇 image denoising
  • 1 篇 enhanced gmm lea...
  • 1 篇 expectation-maxi...
  • 1 篇 epll framework
  • 1 篇 learning (artifi...
  • 1 篇 gaussian process...
  • 1 篇 gaussian mixture...
  • 1 篇 parameter estima...
  • 1 篇 image denoising ...
  • 1 篇 random neighbour...
  • 1 篇 expected patch l...

机构

  • 1 篇 oklahoma state u...
  • 1 篇 xidian univ sch ...

作者

  • 1 篇 ji jian
  • 1 篇 huang jingjing
  • 1 篇 miao qiguang
  • 1 篇 fan guoliang
  • 1 篇 bai mengqi
  • 1 篇 wei jiajie

语言

  • 1 篇 英文
检索条件"主题词=enhanced GMM learning algorithm"
1 条 记 录,以下是1-10 订阅
Image patch prior learning based on random neighbourhood resampling for image denoising
收藏 引用
IET IMAGE PROCESSING 2020年 第5期14卷 838-844页
作者: Ji, Jian Wei, Jiajie Fan, Guoliang Bai, Mengqi Huang, Jingjing Miao, Qiguang Xidian Univ Sch Comp Sci & Technol Xian 710071 Peoples R China Oklahoma State Univ Sch Elect & Comp Engn Stillwater OK 74078 USA
Image patch priors become a popular tool for image denoising. The Gaussian mixture model (gmm) is remarkably effective in modelling natural image patches. However, gmm prior learning using the expectation maximisation... 详细信息
来源: 评论