咨询与建议

限定检索结果

文献类型

  • 6,730 篇 会议
  • 5,120 篇 期刊文献
  • 47 篇 学位论文
  • 6 册 图书
  • 3 篇 资讯

馆藏范围

  • 11,906 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 10,282 篇 工学
    • 7,689 篇 计算机科学与技术...
    • 2,346 篇 软件工程
    • 2,060 篇 电气工程
    • 1,133 篇 控制科学与工程
    • 613 篇 信息与通信工程
    • 453 篇 机械工程
    • 337 篇 电子科学与技术(可...
    • 311 篇 生物工程
    • 250 篇 生物医学工程(可授...
    • 241 篇 动力工程及工程热...
    • 239 篇 材料科学与工程(可...
    • 223 篇 石油与天然气工程
    • 221 篇 化学工程与技术
    • 211 篇 土木工程
    • 188 篇 力学(可授工学、理...
    • 151 篇 仪器科学与技术
    • 140 篇 航空宇航科学与技...
  • 4,665 篇 理学
    • 3,257 篇 数学
    • 837 篇 生物学
    • 689 篇 物理学
    • 477 篇 统计学(可授理学、...
    • 463 篇 系统科学
    • 224 篇 化学
  • 1,932 篇 管理学
    • 1,675 篇 管理科学与工程(可...
    • 433 篇 工商管理
    • 251 篇 图书情报与档案管...
  • 369 篇 医学
    • 236 篇 临床医学
    • 194 篇 基础医学(可授医学...
  • 229 篇 农学
    • 135 篇 作物学
  • 225 篇 经济学
    • 198 篇 应用经济学
  • 124 篇 法学
  • 32 篇 教育学
  • 11 篇 文学
  • 11 篇 军事学
  • 9 篇 艺术学
  • 7 篇 哲学
  • 1 篇 历史学

主题

  • 11,906 篇 evolutionary alg...
  • 592 篇 optimization
  • 530 篇 multi-objective ...
  • 304 篇 genetic algorith...
  • 303 篇 neural networks
  • 267 篇 differential evo...
  • 184 篇 machine learning
  • 168 篇 multiobjective o...
  • 154 篇 particle swarm o...
  • 128 篇 genetic programm...
  • 125 篇 artificial intel...
  • 106 篇 swarm intelligen...
  • 106 篇 genetic algorith...
  • 105 篇 metaheuristics
  • 94 篇 algorithm develo...
  • 94 篇 image processing
  • 92 篇 data mining
  • 84 篇 artificial neura...
  • 80 篇 deep learning
  • 80 篇 global optimizat...

机构

  • 39 篇 natl univ singap...
  • 37 篇 univ birmingham ...
  • 27 篇 univ birmingham ...
  • 27 篇 nanyang technol ...
  • 26 篇 univ granada dep...
  • 21 篇 wuhan univ state...
  • 19 篇 school of comput...
  • 18 篇 china univ geosc...
  • 18 篇 univ adelaide sc...
  • 17 篇 de montfort univ...
  • 16 篇 southern univ sc...
  • 16 篇 natl univ def te...
  • 16 篇 univ cordoba dep...
  • 16 篇 univ jaen dept c...
  • 15 篇 king fahd univ p...
  • 15 篇 shenzhen univ co...
  • 14 篇 michigan state u...
  • 14 篇 univ york dept e...
  • 14 篇 max planck inst ...
  • 13 篇 univ essex sch c...

作者

  • 116 篇 neumann frank
  • 90 篇 yao xin
  • 68 篇 deb kalyanmoy
  • 62 篇 zelinka ivan
  • 53 篇 yang shengxiang
  • 38 篇 sudholt dirk
  • 37 篇 neumann aneta
  • 36 篇 zou juan
  • 36 篇 jin yaochu
  • 33 篇 coello carlos a....
  • 32 篇 tang ke
  • 30 篇 he jun
  • 30 篇 friedrich tobias
  • 30 篇 senkerik roman
  • 30 篇 doerr benjamin
  • 27 篇 schoenauer marc
  • 27 篇 togelius julian
  • 27 篇 cotta carlos
  • 25 篇 wagner markus
  • 25 篇 bossek jakob

语言

  • 11,190 篇 英文
  • 554 篇 其他
  • 110 篇 中文
  • 17 篇 西班牙文
  • 8 篇 日文
  • 7 篇 土耳其文
  • 4 篇 葡萄牙文
  • 3 篇 法文
  • 1 篇 德文
  • 1 篇 朝鲜文
  • 1 篇 俄文
  • 1 篇 斯洛文尼亚文
检索条件"主题词=evolutionary Algorithms"
11906 条 记 录,以下是141-150 订阅
Optimal Allocation of PV Systems on Unbalanced Networks Using evolutionary algorithms
Optimal Allocation of PV Systems on Unbalanced Networks Usin...
收藏 引用
2023 IEEE Symposium Series on Computational Intelligence, SSCI 2023
作者: Bai, Wenlei Zhang, Wen Meng, Fanlin Allmendinger, Richard Lee, Kwang Y. Oracle Energy and Water Oracle Corporation AustinTX United States Business School Baylor University WacoTX United States Business School University of Manchester Manchester United Kingdom Baylor University Electrical & Computer Engineering WacoTX United States
As the distributed energy resources (DERs) increasingly penetrate the unbalanced distribution network, it becomes challenging to accommodate such penetration technically and economically. Therefore, this paper tackles... 详细信息
来源: 评论
Path-extrapolation in evolutionary algorithms  23
Path-extrapolation in Evolutionary Algorithms
收藏 引用
2023 Asia Conference on Artificial Intelligence, Machine Learning and Robotics, AIMLR 2023
作者: Tenne, Yoel Ariel University Ariel Israel
evolutionary algorithms are used to solve challenging optimization problems across a variety of domains. While simple and robust they often do not effectively exploit information generated during the search which in t... 详细信息
来源: 评论
The Study of the Target Set Selection Problem under Deterministic Linear Threshold Model Using evolutionary algorithms  46
The Study of the Target Set Selection Problem under Determin...
收藏 引用
46th ICT and Electronics Convention, MIPRO 2023
作者: Smirnov, Mikhail Kochemazov, Stepan Semenov, Alexander ITMO University St Petersburg Russia
In this paper we study the Target Set Selection problem (TSS) - the well-known combinatorial problem associated with collective behaviour in networks. For a given network graph and the information diffusion model that... 详细信息
来源: 评论
Dynamic Scheduling Optimization for Multi-Satellite Mission Measurement and Control Planning Using evolutionary algorithms and Model Predictive Control  3
Dynamic Scheduling Optimization for Multi-Satellite Mission ...
收藏 引用
3rd International Symposium on Computer Technology and Information Science, ISCTIS 2023
作者: Yao, Xingyi Li, Wenhua Pan, Xiaogang Li, Yaoyu Jiao, Yuanyuan College of Systems Engineering National University of Defense Technology Changsha China
This paper presents a dynamic scheduling optimization method for the multi-satellite mission measurement and control planning problem, which is a complex and uncertain optimization problem that involves rationalizing ... 详细信息
来源: 评论
Online Learning Hyper-Heuristics in Multi-Objective evolutionary algorithms  12th
Online Learning Hyper-Heuristics in Multi-Objective Evoluti...
收藏 引用
12th International Conference on evolutionary Multi-Criterion Optimization, EMO 2023
作者: Heise, Julia Mostaghim, Sanaz Otto-von-Guericke University Universitaetsplatz 2 Magdeburg39106 Germany
Well-defined Hyper-Heuristics enhance the generalization of MOEAs and the blind usability on complex and even dynamic real-world application. Previous works already showed, that Hyper-Heuristics as selectors of crosso... 详细信息
来源: 评论
Assessment of Robust Multi-objective evolutionary algorithms on Robust and Noisy Environments  12th
Assessment of Robust Multi-objective Evolutionary Algorithms...
收藏 引用
12th Brazilian Conference on Intelligent Systems, BRACIS 2023
作者: de Sousa, Mateus Clemente Meneghini, Ivan Reinaldo Guimarães, Frederico Gadelha Instituto Federal de Minas Gerais Minas Gerais Bambuí Brazil Instituto Federal de Minas Gerais Minas Gerais Ibirité Brazil Universidade Federal de Minas Gerais Minas Gerais Belo Horizonte Brazil Machine Intelligence and Data Science – MINDS Lab Universidade Federal de Minas Gerais Belo Horizonte Brazil
Robust optimization considers uncertainty in the decision variables while noisy optimization concerns with uncertainty in the evaluation of objective and constraint functions. Although many evolutionary algorithms hav... 详细信息
来源: 评论
A Survey of evolutionary algorithms  4
A Survey of Evolutionary Algorithms
收藏 引用
4th International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering, ICBAIE 2023
作者: Liu, Lanxue Fei, Teng Zhu, Zhengyu Wu, Kangle Zhang, Yutong Tianjin University of Commerce School of Information Engineering Tianjin China
evolutionary algorithm is a kind of according to the selection and evolution of biological evolution model and the evolution of a kind of random search technology. evolutionary algorithm is a blend of genetics, and ce... 详细信息
来源: 评论
Self-adaptation Can Improve the Noise-tolerance of evolutionary algorithms  23
Self-adaptation Can Improve the Noise-tolerance of Evolution...
收藏 引用
17th ACM/SIGEVO Conference on Foundations of Genetic algorithms, FOGA 2023
作者: Lehre, Per Kristian Qin, Xiaoyu University of Birmingham Birmingham United Kingdom
Real-world optimisation often involves uncertainty. Previous studies proved that evolutionary algorithms (EAs) can be robust to noise when using proper parameter settings, including the mutation rate. However, finding... 详细信息
来源: 评论
A Comparison of the State-of-the-Art evolutionary algorithms with Different Stopping Conditions  15
A Comparison of the State-of-the-Art Evolutionary Algorithms...
收藏 引用
15th International Joint Conference on Computational Intelligence, IJCCI 2023
作者: Herzog, Jana Brest, Janez Bošković, Borko Faculty of Electrical Engineering and Computer Science University of Maribor Koroška cesta 46 Maribor Slovenia
This paper focuses on the comparison of the state-of-the-art algorithms and the influence of a stopping condition, the maximum number of function evaluations, on the optimization process. The main aim is to compare th... 详细信息
来源: 评论
Tuning Process Noise in INS/GNSS Fusion for Drone Navigation Based on evolutionary algorithms  1
收藏 引用
18th International Conference on Soft Computing Models in Industrial and Environmental Applications, SOCO 2023
作者: Llerena, Juan Pedro García, Jesús Molina, José Manuel Arias, Daniel Applied Artificial Intelligence Group University Carlos III of Madrid Madrid Spain Neustrelitz Germany
Tuning the navigation systems is a complex engineering task due to the sensitivity of their parameters, specific requirements to be met, as well as the maneuvering context that the system is designed to address. This ... 详细信息
来源: 评论