咨询与建议

限定检索结果

文献类型

  • 6,709 篇 会议
  • 5,183 篇 期刊文献
  • 96 篇 学位论文
  • 9 篇 科技报告
  • 6 册 图书
  • 3 篇 资讯

馆藏范围

  • 12,006 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 10,311 篇 工学
    • 7,665 篇 计算机科学与技术...
    • 2,331 篇 软件工程
    • 2,042 篇 电气工程
    • 1,133 篇 控制科学与工程
    • 626 篇 信息与通信工程
    • 456 篇 机械工程
    • 323 篇 电子科学与技术(可...
    • 302 篇 生物工程
    • 267 篇 动力工程及工程热...
    • 250 篇 生物医学工程(可授...
    • 238 篇 材料科学与工程(可...
    • 227 篇 化学工程与技术
    • 226 篇 石油与天然气工程
    • 216 篇 土木工程
    • 191 篇 力学(可授工学、理...
    • 146 篇 仪器科学与技术
    • 143 篇 航空宇航科学与技...
    • 132 篇 建筑学
  • 4,713 篇 理学
    • 3,311 篇 数学
    • 834 篇 生物学
    • 675 篇 物理学
    • 482 篇 统计学(可授理学、...
    • 464 篇 系统科学
    • 229 篇 化学
  • 1,938 篇 管理学
    • 1,682 篇 管理科学与工程(可...
    • 436 篇 工商管理
    • 250 篇 图书情报与档案管...
  • 363 篇 医学
    • 220 篇 临床医学
    • 200 篇 基础医学(可授医学...
  • 232 篇 经济学
    • 201 篇 应用经济学
  • 216 篇 农学
  • 135 篇 法学
  • 32 篇 教育学
  • 11 篇 文学
  • 11 篇 艺术学
  • 10 篇 军事学
  • 8 篇 哲学
  • 1 篇 历史学

主题

  • 12,006 篇 evolutionary alg...
  • 598 篇 optimization
  • 530 篇 multi-objective ...
  • 332 篇 genetic algorith...
  • 298 篇 neural networks
  • 272 篇 differential evo...
  • 188 篇 machine learning
  • 173 篇 particle swarm o...
  • 167 篇 multiobjective o...
  • 132 篇 genetic programm...
  • 129 篇 artificial intel...
  • 110 篇 swarm intelligen...
  • 107 篇 metaheuristics
  • 104 篇 genetic algorith...
  • 95 篇 data mining
  • 91 篇 algorithm develo...
  • 88 篇 image processing
  • 82 篇 artificial neura...
  • 81 篇 global optimizat...
  • 76 篇 deep learning

机构

  • 39 篇 natl univ singap...
  • 37 篇 univ birmingham ...
  • 28 篇 nanyang technol ...
  • 28 篇 univ granada dep...
  • 27 篇 univ birmingham ...
  • 27 篇 charles universi...
  • 22 篇 wuhan univ state...
  • 19 篇 school of comput...
  • 18 篇 univ adelaide sc...
  • 17 篇 china univ geosc...
  • 17 篇 de montfort univ...
  • 16 篇 southern univ sc...
  • 16 篇 natl univ def te...
  • 16 篇 univ cordoba dep...
  • 15 篇 king fahd univ p...
  • 15 篇 univ york dept e...
  • 15 篇 shenzhen univ co...
  • 15 篇 univ jaen dept c...
  • 14 篇 michigan state u...
  • 14 篇 max planck inst ...

作者

  • 116 篇 neumann frank
  • 90 篇 yao xin
  • 67 篇 deb kalyanmoy
  • 63 篇 zelinka ivan
  • 53 篇 yang shengxiang
  • 37 篇 neumann aneta
  • 37 篇 jin yaochu
  • 37 篇 sudholt dirk
  • 36 篇 zou juan
  • 32 篇 tang ke
  • 32 篇 coello carlos a....
  • 31 篇 he jun
  • 31 篇 senkerik roman
  • 30 篇 friedrich tobias
  • 27 篇 schoenauer marc
  • 27 篇 cotta carlos
  • 27 篇 doerr benjamin
  • 26 篇 togelius julian
  • 25 篇 wagner markus
  • 25 篇 bossek jakob

语言

  • 11,494 篇 英文
  • 346 篇 其他
  • 119 篇 中文
  • 17 篇 西班牙文
  • 8 篇 日文
  • 8 篇 土耳其文
  • 5 篇 法文
  • 4 篇 葡萄牙文
  • 1 篇 德文
  • 1 篇 朝鲜文
  • 1 篇 俄文
检索条件"主题词=evolutionary Algorithms"
12006 条 记 录,以下是211-220 订阅
排序:
Analyzing and Overcoming Local Optima in Complex Multi-Objective Optimization by Decomposition-Based evolutionary algorithms
arXiv
收藏 引用
arXiv 2024年
作者: Dong, Ting Wang, Haoxin Zhang, Hengxi Ding, Wenbo
When addressing the challenge of complex multiobjective optimization problems, particularly those with non-convex and non-uniform Pareto fronts, Decomposition-based Multi-Objective evolutionary algorithms (MOEADs) oft... 详细信息
来源: 评论
Near-Tight Runtime Guarantees for Many-Objective evolutionary algorithms
arXiv
收藏 引用
arXiv 2024年
作者: Wietheger, Simon Doerr, Benjamin Algorithms and Complexity Group Technische Universität Wien Vienna Austria CNRS École Polytechnique Institut Polytechnique de Paris Palaiseau France
Despite significant progress in the field of mathematical runtime analysis of multi-objective evolutionary algorithms (MOEAs), the performance of MOEAs on discrete many-objective problems is little understood. In part... 详细信息
来源: 评论
A Hybrid Intelligent Framework for Maximising Sag Mill Throughput: An Integration of Expert Knowledge, Machine Learning and evolutionary algorithms for Parameter Optimisation
SSRN
收藏 引用
SSRN 2024年
作者: Ghasemi, Zahra Neshat, Mehdi Aldrich, Chris Karageorgos, John Zanin, Max Neumann, Frank Chen, Lei School of Electrical and Mechanical Engineering The University of Adelaide North Terrace AdelaideSA5005 Australia Centre for Artificial Intelligence Research & Optimisation Torrens University Australia Brisbane4006 Australia Western Australian School of Mines Curtin University PerthWA6845 Australia Manta Controls Pty Ltd 1 Sharon Pl GrangeSA5022 Australia School of Chemical Engineering The University of Adelaide North Terrace AdelaideSA5005 Australia School of Civil Environmental and Mining Engineering The University of South Australia AdelaideSA5095 Australia School of Computer and Mathematical Sciences The University of Adelaide North Terrace AdelaideSA5005 Australia Faculty of Engineering and Information Technology The University of Technology Sydney UltimoNSW2007 Australia
In mineral processing plants, grinding is a crucial step, accounting for approximately 50% of the total mineral processing costs. Semi-autogenous grinding (SAG) mills are extensively employed in the grinding circuit o... 详细信息
来源: 评论
A First Look at Kolmogorov-Arnold Networks in Surrogate-assisted evolutionary algorithms
arXiv
收藏 引用
arXiv 2024年
作者: Hao, Hao Zhang, Xiaoqun Li, Bingdong Zhou, Aimin The Institute of Natural Sciences Shanghai Jiao Tong University Shanghai200240 China The Shanghai Institute of AI for Education The School of Computer Science and Technology East China Normal University Shanghai200062 China
Surrogate-assisted evolutionary Algorithm (SAEA) is an essential method for solving expensive expensive problems. Utilizing surrogate models to substitute the optimization function can significantly reduce reliance on... 详细信息
来源: 评论
Optimized Drug Design using Multi-Objective evolutionary algorithms with SELFIES
arXiv
收藏 引用
arXiv 2024年
作者: Hömberg, Tomoya Mostaghim, Sanaz Hiwa, Satoru Hiroyasu, Tomoyuki Department of Computational Intelligence Otto-von-Guericke University Magdeburg Germany Faculty of Life and Medical Sciences Doshisha University Kyoto Japan
Computer aided drug design is a promising approach to reduce the tremendous costs, i.e. time and resources, for developing new medicinal drugs. It finds application in aiding the traversal of the vast chemical space o... 详细信息
来源: 评论
Theoretical Advantage of Multiobjective evolutionary algorithms for Problems with Different Degrees of Conflict
arXiv
收藏 引用
arXiv 2024年
作者: Zheng, Weijie School of Computer Science and Technology International Research Institute for Artificial Intelligence Harbin Institute of Technology Shenzhen China
The field of multiobjective evolutionary algorithms (MOEAs) often emphasizes its popularity for optimization problems with conflicting objectives. However, it is still theoretically unknown how MOEAs perform for diffe... 详细信息
来源: 评论
Comparative analysis of various evolutionary algorithms: Past three decades
收藏 引用
EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS 2024年 第4期11卷
作者: Srikumar, A. Pande, Sagar Dhanraj VIT AP Univ Sch Comp Sci & Engn Amaravati Andhra Pradesh India
INTRODUCTION: The evolutionary algorithms created back in 1953, have gone through various phases of development over the years. It has been put to use to solve various problems in different domains including complex p... 详细信息
来源: 评论
Performance Comparison of Surrogate-Assisted evolutionary algorithms on Computational Fluid Dynamics Problems
arXiv
收藏 引用
arXiv 2024年
作者: Kůdela, Jakub Dobrovský, Ladislav Institute of Automation and Computer Science Faculty of Mechanical Engineering Brno University of Technology Czech Republic
Surrogate-assisted evolutionary algorithms (SAEAs) are recently among the most widely studied methods for their capability to solve expensive real-world optimization problems. However, the development of new methods a... 详细信息
来源: 评论
evolutionary algorithms with Self-adjusting Asymmetric Mutation  16th
Evolutionary Algorithms with Self-adjusting Asymmetric Mutat...
收藏 引用
16th International Conference on Parallel Problem Solving from Nature (PPSN)
作者: Rajabi, Amirhossein Witt, Carsten Tech Univ Denmark Lyngby Denmark
evolutionary algorithms (EAs) and other randomized search heuristics are often considered as unbiased algorithms that are invariant with respect to different transformations of the underlying search space. However, if... 详细信息
来源: 评论
Self-Adjusting evolutionary algorithms Are Slow on Multimodal Landscapes
arXiv
收藏 引用
arXiv 2024年
作者: Lengler, Johannes Sturm, Konstantin Department of Computer Science ETH Zürich Zürich Switzerland
The one-fifth rule and its generalizations are a classical parameter control mechanism in discrete domains. They have also been transferred to control the offspring population size of the (1, λ)-EA. This has been sho... 详细信息
来源: 评论