咨询与建议

限定检索结果

文献类型

  • 6,709 篇 会议
  • 5,183 篇 期刊文献
  • 96 篇 学位论文
  • 9 篇 科技报告
  • 6 册 图书
  • 3 篇 资讯

馆藏范围

  • 12,006 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 10,311 篇 工学
    • 7,665 篇 计算机科学与技术...
    • 2,331 篇 软件工程
    • 2,042 篇 电气工程
    • 1,133 篇 控制科学与工程
    • 626 篇 信息与通信工程
    • 456 篇 机械工程
    • 323 篇 电子科学与技术(可...
    • 302 篇 生物工程
    • 267 篇 动力工程及工程热...
    • 250 篇 生物医学工程(可授...
    • 238 篇 材料科学与工程(可...
    • 227 篇 化学工程与技术
    • 226 篇 石油与天然气工程
    • 216 篇 土木工程
    • 191 篇 力学(可授工学、理...
    • 146 篇 仪器科学与技术
    • 143 篇 航空宇航科学与技...
    • 132 篇 建筑学
  • 4,713 篇 理学
    • 3,311 篇 数学
    • 834 篇 生物学
    • 675 篇 物理学
    • 482 篇 统计学(可授理学、...
    • 464 篇 系统科学
    • 229 篇 化学
  • 1,938 篇 管理学
    • 1,682 篇 管理科学与工程(可...
    • 436 篇 工商管理
    • 250 篇 图书情报与档案管...
  • 363 篇 医学
    • 220 篇 临床医学
    • 200 篇 基础医学(可授医学...
  • 232 篇 经济学
    • 201 篇 应用经济学
  • 216 篇 农学
  • 135 篇 法学
  • 32 篇 教育学
  • 11 篇 文学
  • 11 篇 艺术学
  • 10 篇 军事学
  • 8 篇 哲学
  • 1 篇 历史学

主题

  • 12,006 篇 evolutionary alg...
  • 598 篇 optimization
  • 530 篇 multi-objective ...
  • 332 篇 genetic algorith...
  • 298 篇 neural networks
  • 272 篇 differential evo...
  • 188 篇 machine learning
  • 173 篇 particle swarm o...
  • 167 篇 multiobjective o...
  • 132 篇 genetic programm...
  • 129 篇 artificial intel...
  • 110 篇 swarm intelligen...
  • 107 篇 metaheuristics
  • 104 篇 genetic algorith...
  • 95 篇 data mining
  • 91 篇 algorithm develo...
  • 88 篇 image processing
  • 82 篇 artificial neura...
  • 81 篇 global optimizat...
  • 76 篇 deep learning

机构

  • 39 篇 natl univ singap...
  • 37 篇 univ birmingham ...
  • 28 篇 nanyang technol ...
  • 28 篇 univ granada dep...
  • 27 篇 univ birmingham ...
  • 27 篇 charles universi...
  • 22 篇 wuhan univ state...
  • 19 篇 school of comput...
  • 18 篇 univ adelaide sc...
  • 17 篇 china univ geosc...
  • 17 篇 de montfort univ...
  • 16 篇 southern univ sc...
  • 16 篇 natl univ def te...
  • 16 篇 univ cordoba dep...
  • 15 篇 king fahd univ p...
  • 15 篇 univ york dept e...
  • 15 篇 shenzhen univ co...
  • 15 篇 univ jaen dept c...
  • 14 篇 michigan state u...
  • 14 篇 max planck inst ...

作者

  • 116 篇 neumann frank
  • 90 篇 yao xin
  • 67 篇 deb kalyanmoy
  • 63 篇 zelinka ivan
  • 53 篇 yang shengxiang
  • 37 篇 neumann aneta
  • 37 篇 jin yaochu
  • 37 篇 sudholt dirk
  • 36 篇 zou juan
  • 32 篇 tang ke
  • 32 篇 coello carlos a....
  • 31 篇 he jun
  • 31 篇 senkerik roman
  • 30 篇 friedrich tobias
  • 27 篇 schoenauer marc
  • 27 篇 cotta carlos
  • 27 篇 doerr benjamin
  • 26 篇 togelius julian
  • 25 篇 wagner markus
  • 25 篇 bossek jakob

语言

  • 11,494 篇 英文
  • 346 篇 其他
  • 119 篇 中文
  • 17 篇 西班牙文
  • 8 篇 日文
  • 8 篇 土耳其文
  • 5 篇 法文
  • 4 篇 葡萄牙文
  • 1 篇 德文
  • 1 篇 朝鲜文
  • 1 篇 俄文
检索条件"主题词=evolutionary Algorithms"
12006 条 记 录,以下是411-420 订阅
排序:
The use of evolutionary algorithms for designing an optimum structure of a geodesic measurement and control network
The use of evolutionary algorithms for designing an optimum ...
收藏 引用
64th Scientific Conference of the Committee-for-Civil-Engineering-of-the-Polish-Academy-of-Sciences and the Science-Committee-of-the-Polish-Association-of-Civil-Engineers (PZITB) (KRYNICA)
作者: Mrowczynska, Maria Sztubecki, Jacek Univ Zielona Gora Fac Civil Engn Architecture & Environm Engn Ul Prof Z Szafrana 1 PL-65516 Zielona Gora Poland Univ Sci & Technol Fac Civil & Environm Engn & Architecture Ul Prof S Kaliskiego 7 PL-85796 Bydgoszcz Poland
The paper presents an attempt to determine an optimum structure of a geodesic measurement and control network used for geodesic monitoring to determine horizontal displacements of buildings. In geodesy, horizontal net... 详细信息
来源: 评论
Optimum design of reinforced earth walls using evolutionary optimization algorithms
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2020年 第16期32卷 12079-12102页
作者: Kashani, Ali R. Saneirad, Ali Gandomi, Amir H. Univ Memphis Dept Civil Engn Memphis TN 38152 USA Arak Univ Dept Civil Engn Arak Iran Stevens Inst Technol Sch Business Hoboken NJ 07030 USA
This study addresses the optimum cost design of mechanically stabilized earth (MSE) using geosynthetics. The design process of MSEs is mathematically programmed based on an objective function depending on the length o... 详细信息
来源: 评论
Rolling horizon evolutionary algorithms for general video game playing
arXiv
收藏 引用
arXiv 2020年
作者: Gaina, Raluca D. Devlin, Sam Lucas, Simon M. Perez-Liebana, Diego School of Electronic Engineering and Computer Science Queen Mary University of London Mile End Rd LondonE1 4FZ United Kingdom Microsoft Research Cambridge
Game-playing evolutionary algorithms, specifically Rolling Horizon evolutionary algorithms, have recently managed to beat the state of the art in performance across many games. However, the best results per game are h... 详细信息
来源: 评论
Reinforced evolutionary algorithms for Game Difficulty Control
Reinforced Evolutionary Algorithms for Game Difficulty Contr...
收藏 引用
作者: Guangwu Cui Ruimin Shen Yingfeng Chen Juan Zou Shengxiang Yang Changjie Fan Jinghua Zheng Xiangtan University
In the field of game designing, artificial intelligence is used to generate responsive, adaptive, or intelligent behaviors primarily in Non-Player-Characters(NPCs). There is a large demand for controlling game AI sinc... 详细信息
来源: 评论
Investigation of warrior robots behavior by using evolutionary algorithms
arXiv
收藏 引用
arXiv 2020年
作者: Borojerdi, Shahriar Sharifi Karimi, Mehdi Amiri, Ehsan Azad University Branch Ghazvin Iran
MSC Codes 68T40(Primary), 97P80(Secondary)In this study, we review robots behavior especially warrior robots by using evolutionary algorithms. This kind of algorithms is inspired by nature that causes robots behaviors... 详细信息
来源: 评论
Exploring Maximum Entropy Distributions with evolutionary algorithms
arXiv
收藏 引用
arXiv 2020年
作者: Rojas, Raul Freie Universitaet Berlin
This paper shows how to evolve numerically the maximum entropy probability distributions for a given set of constraints, which is a variational calculus problem. An evolutionary algorithm can obtain approximations to ... 详细信息
来源: 评论
Finding optimal pulse repetion intervals with many-objective evolutionary algorithms
arXiv
收藏 引用
arXiv 2020年
作者: Dufossé, Paul Enderli, Cyrille Thales Defense Mission Systems France Randopt Team Inria Paris-Saclay and CMAP École Polytechnique France
We consider the problem of finding Pulse Repetition Intervals allowing the best compromises mitigating range and velocity ambiguities in a Pulse-Doppler radar system. This problem has been previously proposed as a Man... 详细信息
来源: 评论
RUNTIME ANALYSIS OF evolutionary algorithms WITH BIASED MUTATION FOR THE MULTI-OBJECTIVE MINIMUM SPANNING TREE PROBLEM
arXiv
收藏 引用
arXiv 2020年
作者: Roostapour, Vahid Bossek, Jakob Neumann, Frank Optimisation and Logistics University of Adelaide Adelaide Australia
evolutionary algorithms (EAs) are general-purpose problem solvers that usually perform an unbiased search. This is reasonable and desirable in a black-box scenario. For combinatorial optimization problems, often more ... 详细信息
来源: 评论
Using deep learning and evolutionary algorithms for time series forecasting  27
Using deep learning and evolutionary algorithms for time ser...
收藏 引用
27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2019
作者: Gonzalez, Rafael Thomazi Couto Barone, Dante Augusto Institute of Informatics - Federal University of Rio Grande do Sul Porto Alegre RS Brazil
Deep Learning is one of the latest approaches in the field of artificial neural networks. Since they were first proposed, Deep Learning models have obtained state-of-art results in some problems related to classificat... 详细信息
来源: 评论
Survey on Multi-Objective evolutionary algorithms  5
Survey on Multi-Objective Evolutionary Algorithms
收藏 引用
5th Annual International Conference on Network and Information Systems for Computers, ICNISC 2019
作者: Huang, Wenlan Zhang, Yu Li, Lan School of Computer and Information Engineering Harbin University of Commerce Harbin150028 China Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing Harbin University of Commerce Harbin150028 China
Multi-objective evolutionary algorithm (MOEA) is the main method to solve multi-objective optimization problem (MOP), which has become one of the hottest research areas of evolutionary computation. This paper surveys ... 详细信息
来源: 评论