咨询与建议

限定检索结果

文献类型

  • 6,722 篇 会议
  • 5,218 篇 期刊文献
  • 148 篇 学位论文
  • 9 篇 科技报告
  • 6 册 图书
  • 3 篇 资讯

馆藏范围

  • 12,106 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 10,352 篇 工学
    • 7,701 篇 计算机科学与技术...
    • 2,349 篇 软件工程
    • 2,051 篇 电气工程
    • 1,135 篇 控制科学与工程
    • 624 篇 信息与通信工程
    • 456 篇 机械工程
    • 326 篇 电子科学与技术(可...
    • 302 篇 生物工程
    • 267 篇 动力工程及工程热...
    • 251 篇 生物医学工程(可授...
    • 241 篇 材料科学与工程(可...
    • 227 篇 化学工程与技术
    • 226 篇 石油与天然气工程
    • 217 篇 土木工程
    • 192 篇 力学(可授工学、理...
    • 147 篇 仪器科学与技术
    • 142 篇 航空宇航科学与技...
    • 133 篇 建筑学
  • 4,738 篇 理学
    • 3,333 篇 数学
    • 835 篇 生物学
    • 680 篇 物理学
    • 486 篇 统计学(可授理学、...
    • 465 篇 系统科学
    • 229 篇 化学
  • 1,941 篇 管理学
    • 1,684 篇 管理科学与工程(可...
    • 436 篇 工商管理
    • 251 篇 图书情报与档案管...
  • 366 篇 医学
    • 220 篇 临床医学
    • 202 篇 基础医学(可授医学...
  • 232 篇 经济学
    • 201 篇 应用经济学
  • 216 篇 农学
  • 135 篇 法学
  • 34 篇 教育学
  • 11 篇 文学
  • 11 篇 艺术学
  • 10 篇 军事学
  • 8 篇 哲学
  • 1 篇 历史学

主题

  • 12,106 篇 evolutionary alg...
  • 604 篇 optimization
  • 533 篇 multi-objective ...
  • 341 篇 genetic algorith...
  • 300 篇 neural networks
  • 275 篇 differential evo...
  • 189 篇 machine learning
  • 173 篇 particle swarm o...
  • 165 篇 multiobjective o...
  • 143 篇 genetic programm...
  • 132 篇 artificial intel...
  • 110 篇 swarm intelligen...
  • 108 篇 metaheuristics
  • 105 篇 genetic algorith...
  • 95 篇 data mining
  • 91 篇 algorithm develo...
  • 86 篇 image processing
  • 81 篇 global optimizat...
  • 80 篇 deep learning
  • 79 篇 artificial neura...

机构

  • 59 篇 brno university ...
  • 39 篇 natl univ singap...
  • 37 篇 univ birmingham ...
  • 28 篇 nanyang technol ...
  • 28 篇 univ granada dep...
  • 27 篇 univ birmingham ...
  • 27 篇 charles universi...
  • 22 篇 wuhan univ state...
  • 19 篇 school of comput...
  • 18 篇 univ adelaide sc...
  • 17 篇 china univ geosc...
  • 17 篇 de montfort univ...
  • 16 篇 southern univ sc...
  • 16 篇 natl univ def te...
  • 16 篇 univ cordoba dep...
  • 15 篇 king fahd univ p...
  • 15 篇 univ york dept e...
  • 15 篇 shenzhen univ co...
  • 14 篇 michigan state u...
  • 14 篇 max planck inst ...

作者

  • 116 篇 neumann frank
  • 89 篇 yao xin
  • 68 篇 deb kalyanmoy
  • 63 篇 zelinka ivan
  • 53 篇 yang shengxiang
  • 37 篇 neumann aneta
  • 37 篇 jin yaochu
  • 36 篇 zou juan
  • 36 篇 sudholt dirk
  • 32 篇 tang ke
  • 32 篇 coello carlos a....
  • 31 篇 he jun
  • 30 篇 friedrich tobias
  • 30 篇 senkerik roman
  • 28 篇 doerr benjamin
  • 27 篇 schoenauer marc
  • 27 篇 togelius julian
  • 27 篇 cotta carlos
  • 25 篇 wagner markus
  • 25 篇 bossek jakob

语言

  • 11,559 篇 英文
  • 378 篇 其他
  • 119 篇 中文
  • 17 篇 西班牙文
  • 8 篇 日文
  • 8 篇 土耳其文
  • 4 篇 葡萄牙文
  • 3 篇 法文
  • 1 篇 德文
  • 1 篇 朝鲜文
  • 1 篇 俄文
  • 1 篇 斯洛文尼亚文
检索条件"主题词=evolutionary Algorithms"
12106 条 记 录,以下是791-800 订阅
排序:
Objective transformation-based and niche-based many-objective evolutionary algorithm with a two-step coordination mechanism
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2025年 141卷
作者: Luo, Jiale Gu, Qinghua Li, Xuexian Chen, Lu Xian Univ Architecture & Technol Sch Management Xian 710055 Shaanxi Peoples R China Xian Univ Architecture & Technol Sch Resources Engn Xian 710055 Shaanxi Peoples R China Xian Univ Architecture & Technol Xian Key Lab Intelligent Ind Percept Calculat & De Xian 710055 Peoples R China
evolutionary algorithms have emerged as powerful tools for optimization. However, striking a balance between convergence and diversity in many-objective optimization remains a significant challenge. To address this ga... 详细信息
来源: 评论
An adaptive matrix-based evolutionary computation framework for EEG feature selection
收藏 引用
MEMETIC COMPUTING 2025年 第1期17卷 1-19页
作者: Duan, Danting Sun, Bing Yang, Qiang Ye, Long Zhang, Qin Zhang, Jun Commun Univ China Key Lab Media Audio & Video Minist Educ Beijing Peoples R China Nankai Univ Coll Artif Intelligence Tianjin Peoples R China Nanjing Univ Informat Sci & Technol Sch Artif Intelligence Nanjing Peoples R China Commun Univ China State Key Lab Media Convergence & Commun Beijing Peoples R China Hanyang Univ Dept Elect & Elect Engn Ansan South Korea
Electroencephalogram (EEG) plays a significant role in emotion recognition because it contains abundant information. However, due to the highly correlated EEG channels, a lot of redundant EEG features exist, which not... 详细信息
来源: 评论
System identification for T1D via artificial intelligence algorithms: evolutionary or swarm
收藏 引用
BIOMEDICAL SIGNAL PROCESSING AND CONTROL 2023年 第1期85卷
作者: Flores-Gutierrez, Claudia Patricia Quiroz-Compean, Griselda Renteria-Vidales, Octavio Torres-Trevino, Luis Ruiz-Velazquez, Eduardo Femat, Ricardo Univ Politecn San Luis Potosi Acad Tecnol Informac Urbano Villalon 500 San Luis Potosi 78363 Slp Mexico Univ Autonoma Nuevo Leon Fac Ingn Mecan & Elect Ave Univ S-NCd Univ San Nicolas De Los Garza 66455 NL Mexico Ctr Invest Matemat AC Jalisco S-NApartado Postal 402 Guanajuato 36000 Gto Mexico CUCEI UDG Div Elect & Comp Blvd Marcelino Garcia Barragan 1421 Guadalajara 44430 Jal Mexico IPICyT Div Control & Sistemas Dinam Camino Presa San Jose 2055Lomas Secc 4a San Luis Potosi 78216 Slp Mexico
This work contributes on how a parameter optimization scheme tackles the system identification problem in type 1 diabetes (T1D) patients to derive a dynamical model with potential application on feedback control schem... 详细信息
来源: 评论
evolutionary optimization of spatially-distributed multi-sensors placement for indoor surveillance environments with security levels
收藏 引用
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 2025年 166卷
作者: Moreno-Saavedra, Luis M. Costa, Vinicius G. Garrido-Saez, Adrian Jimenez-Fernandez, Silvia Portilla-Figueras, J. Antonio Salcedo-Sanz, Sancho Univ Alcala Dept Signal Proc & Commun Alcala De Henares 28805 Madrid Spain Fed Univ Rio Janeiro Syst & Comp Engn Program BR-21941617 Rio De Janeiro Brazil
The surveillance multi-sensor placement is an important optimization problem that consists of positioning several sensors of different types to maximize the coverage of a determined area while minimizing the cost of t... 详细信息
来源: 评论
evolutionary algorithms for hyperparameter tuning on neural networks models  26
Evolutionary algorithms for hyperparameter tuning on neural ...
收藏 引用
26th European Modeling and Simulation Symposium, EMSS 2014
作者: Orive, David Sorrosal, Gorka Borges, Cruz E. Martin, Cristina Alonso-Vicario, Ainhoa Deusto Institute of Technology - DeustoTech Energy University of Deusto Avda. Universidades 24 Bilbao Spain
In this work we present a comparison of several Artificial Neural Networks weights initialization methods based on evolutionary algorithms. We have tested these methods on three datasets: KEEL regression problems, ran... 详细信息
来源: 评论
Identification of Ferrite Core Inductors Parameters by evolutionary algorithms
Identification of Ferrite Core Inductors Parameters by Evolu...
收藏 引用
International Conference on Industrial Informatics
作者: Kateryna Stoyka Giulia Di Capua Antonio Della Cioppa Nicola Femia Giovanni Spagnuolo Department of Information Engineering Electrical Engineering and Applied Mathematics (DIEM) University of Salerno Fisciano (SA) 84084 ITALY
This paper discusses the identification of Ferrite Core (FC) power inductors parameters in the real operating conditions relevant to Switch-Mode Power Supplies starting from experimental measurements. A novel method f... 详细信息
来源: 评论
Handling objective preference and variable uncertainty in evolutionary multi-objective optimization
收藏 引用
SWARM AND evolutionary COMPUTATION 2025年 94卷
作者: Yadav, Deepanshu Ramu, Palaniappan Deb, Kalyanmoy Indian Inst Technol Madras Dept Engn Design Chennai 600036 India Michigan State Univ Dept Elect & Comp Engn E Lansing MI USA
evolutionary algorithms (EAs) are widely employed in multi-objective optimization (MOO) to find a well- distributed set of near-Pareto solutions. Among various types of practicalities that demand standard evolutionary... 详细信息
来源: 评论
On Increasing Computational Efficiency of evolutionary algorithms Applied to Large Optimization Problems
On Increasing Computational Efficiency of Evolutionary Algor...
收藏 引用
IEEE Congress on evolutionary Computation
作者: Maciej Glowacki Janusz Orkisz Institute for Computational Civil Engineering Cracow University of Technology Cracow Poland
This paper presents new advances in development of dedicated evolutionary algorithms (EA) for large non-linear constrained optimization problems. The primary objective of our research is a significant increase of the ... 详细信息
来源: 评论
Exploratory analysis and evolutionary computing coupled machine learning algorithms for modelling the wear characteristics of AZ31 alloy
收藏 引用
MATERIALS TODAY COMMUNICATIONS 2023年 37卷
作者: Mishra, Akshansh Jatti, Vijaykumar S. Sefene, Eyob Messele Politecn Milan Sch Ind & Informat Engn Milan Italy Symbiosis Inst Technol Dept Mech Engn Pune 412115 India Natl Taiwan Univ Sci & Technol Dept Mech Engn Taipei 10607 Taiwan
The wear resistance of magnesium alloys is one of its key technological properties that could limit their practical application. In accordance with ASTM G99-95a standard, this study used a pin-on-disc method to analyz... 详细信息
来源: 评论
Improving the Performance of evolutionary algorithms by Soft-Constraining their Sampling Capabilities
Improving the Performance of Evolutionary Algorithms by Soft...
收藏 引用
IEEE Congress on evolutionary Computation
作者: P. Caamano G. Varela R.J. Duro Integrated Group for Engineering Research Universidade da Coruna Spain
In this paper we argue that to produce good optimization performances, the exploration of the solution space does not need to be carried out in the unorderly fashion most evolutionary algorithms use. Other strategies ... 详细信息
来源: 评论